【题目】如图,在正方形网格上有一个△DEF .
①作△DEF关于直线HG的轴对称图形;
②作△DEF的EF边上的高;
③若网格上的最小正方形边长为1,求△DEF的面积.![]()
参考答案:
【答案】【解答】①如图所示,△D′E′F′即为所求作的△DEF关于直线HG的轴对称图形;![]()
②如图所示,DH为EF边上的高线;
③△DEF的面积
.
【解析】【分析①根据网格结构找出点D、E、F关于直线HG的对称点D′、E′、F′的位置,然后顺次连接即可;
②根据网格结构以及EF的位置,过点D作小正方形的对角线,与FE的延长线相交于H , DH即为所求作的高线;
③DE为底边,点F到DE的距离为高,根据三角形的面积公式列式进行计算即可得解.
【考点精析】通过灵活运用轴对称图形,掌握两个完全一样的图形关于某条直线对折,如果两边能够完全重合,我们就说这两个图形成轴对称,这条直线就对称轴即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,∠1=∠2,G是AD的中点,延长BG交AC于点E,F为AB上一点,CF⊥AD交AD于点H.①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线;③CH为△ACD的边AD上的高;④AH是△ACF的角平分线和高线,其中判断正确的有.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了更好的保护美丽图画的邛海湿地,西昌市污水处理厂决定先购买A、B两型污水处理设备共20台,对邛海湿地周边污水进行处理,每台A型污水处理设备12万元,每台B型污水处理设备10万元.已知1台A型污水处理设备和2台B型污水处理设备每周可以处理污水640吨,2台A型污水处理设备和3台B型污水处理设备每周可以处理污水1080吨.
(1)求A、B两型污水处理设备每周分别可以处理污水多少吨?
(2)经预算,市污水处理厂购买设备的资金不超过230万元,每周处理污水的量不低于4500吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知A=x-y+1,B=x+y+1,C=(x+y)(x-y)+2x,两同学对x、y分别取了不同的值,求出的A、B、C的值不同,但A×B-C的值却总是一样的.因此两同学得出结论:无论x、y取何值,A×B-C的值都不发生变化.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)12a+5b﹣8a﹣7b
(2)5a2b﹣[2ab2﹣3(ab2﹣a2b)]. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAD=∠CAD,则AD是△ABC的角平分线,对吗?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(列方程(组)及不等式解应用题)
春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
相关试题