【题目】如图,正方形AOCB的边长为4,反比例函数y=
(k≠0,且k为常数)的图象过点E,且S△AOE=3S△OBE . ![]()
(1)求k的值;
(2)反比例函数图象与线段BC交于点D,直线y=
x+b过点D与线段AB交于点F,延长OF交反比例函数y=
(x<0)的图象于点N,求N点坐标.
参考答案:
【答案】
(1)解:∵S△AOE=3S△OBE,
∴AE=3BE,
∴AE=3,
∴E(﹣3,4)
反比例函数y=
(k≠0,且k为常数)的图象过点E,
∴4=
,即k=﹣12
(2)解:∵正方形AOCB的边长为4,
∴点D的横坐标为﹣4,点F的纵坐标为4.
∵点D在反比例函数的图象上,
∴点D的纵坐标为3,即D(﹣4,3).
∵点D在直线y=
x+b上,
∴3=
×(﹣4)+b,解得b=5.
∴直线DF为y=
x+5,
将y=4代入y=
x+5,得4=
x+5,解得x=﹣2.
∴点F的坐标为(﹣2,4),
设直线OF的解析式为y=mx,
代入F的坐标得,4=﹣2m,
解得m=﹣2,
∴直线OF的解析式为y=﹣2x,
解
,得
.
∴N(﹣
,2
).
【解析】(1)根据题意求得E的坐标,把点E(﹣3,4)代入利用待定系数法即可求出k的值;(2)由正方形AOCB的边长为4,故可知点D的横坐标为﹣4,点F的纵坐标为4.由于点D在反比例函数的图象上,所以点D的纵坐标为3,即D(﹣4,3),由点D在直线y=
x+b上可得出b的值,进而得出该直线的解析式,再把y=4代入直线的解析式即可求出点F的坐标,然后根据待定系数法求得直线OF的解析式,然后联立方程解方程组即可求得.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠B>∠C,AD⊥BC,垂足为D,AE平分∠BAC.已知∠B=65°,∠DAE=20°,求∠C的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)阅读理解:
如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是 ;
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】当前正值樱桃销售季节,小李用20000元在樱桃基地购进樱桃若干进行销售,由于销售状况良好,他又立即拿出60000元资金购进该种樱桃,但这次的进货价比第一次的进货价提高了20%,购进樱桃数量是第一次的2倍还多200千克.
(1)该种樱桃的第一次进价是每千克多少元?
(2)如果小李按每千克90元的价格出售,当大部分樱桃售出后,余下500千克按售价的7折出售完,小李销售这种樱桃共盈利多少元. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.

(1)求证:AD=AF;
(2)求证:BD=EF;
(3)试判断四边形ABNE的形状,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本题7分)如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.
(1)判断线段AB与DE的数量关系和位置关系,并说明理由;
(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AD是
的角平分线,
,
,垂足分别为点E、点F,连接EF与AD相交于点O,下列结论不一定成立的是


A.
B.
C.
D. 
相关试题