【题目】已知,抛物线
(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=
.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使
,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
![]()
参考答案:
【答案】(1)
,顶点D(1,4);(2)证明见解析;(3)P(
,
)或(
,
);(4)(0,0)或(9,0)或(0,﹣
).
【解析】试题分析:(1)由对称轴求出B的坐标,由待定系数法求出抛物线解析式,即可得出顶点D的坐标;
(2)由勾股定理和勾股定理的逆定理证出△ACD为直角三角形,∠ACD=90°.得出AD为△ACD外接圆的直径,再证明△AED为直角三角形,∠ADE=90°.得出AD⊥DE,即可得出结论;
(3)求出直线AC的解析式,再求出线段AD的中点N的坐标,过点N作NP∥AC,交抛物线于点P,求出直线NP的解析式,与抛物线联立,即可得出答案;
(4)由相似三角形的性质和直角三角形的性质即可得出答案.
试题解析:(1)∵抛物线的对称轴是直线x=1,点A(3,0),∴根据抛物线的对称性知点B的坐标为(﹣1,0),OA=3,将A(3,0),B(﹣1,0)代入抛物线解析式中得:
,解得:
,∴抛物线解析式为
;当x=1时,y=4,∴顶点D(1,4).
(2)当=0时,∴点C的坐标为(0,3),∴AC=
=
,CD=
=
,AD=
=
,∴AC2+CD2=AD2,∴△ACD为直角三角形,∠ACD=90°,∴AD为△ACD外接圆的直径,∵点E在 轴C点的上方,且CE=
,∴E(0,
),∴AE=
=
,DE=
=
,∴DE2+AD2=AE2,∴△AED为直角三角形,∠ADE=90°,∴AD⊥DE,又∵AD为△ACD外接圆的直径,∴DE是△ACD外接圆的切线;
(3)设直线AC的解析式为y=kx+b,根据题意得:
,解得:
,∴直线AC的解析式为y=﹣x+3,∵A(3,0),D(1,4),∴线段AD的中点N的坐标为(2,2),过点N作NP∥AC,交抛物线于点P,设直线NP的解析式为y=﹣x+c,则﹣2+c=2,解得:c=4,∴直线NP的解析式为y=﹣x+4,由y=﹣x+4,y=﹣x2+2x+3联立得:﹣x2+2x+3=﹣x+4,解得:x=
或x=
,∴y=
,或y=
,∴P(
,
)或(
,
);
(4)分三种情况:①M恰好为原点,满足△CMB∽△ACD,M(0,0);
②M在x轴正半轴上,△MCB∽△ACD,此时M(9,0);
③M在y轴负半轴上,△CBM∽△ACD,此时M(0,﹣
);
综上所述,点M的坐标为(0,0)或(9,0)或(0,﹣
).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一次函数y=(2m-4)x+3n.
(1)当m,n取何值时,y随x的增大而增大?
(2)当m,n取何值时,函数图象经过原点?
(3)当m,n取何值时,函数图象与y轴交点在x轴上方?
(4)若图象经过一、三、四象限,求m,n的取值范围?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列变形不正确的是( )
A.若x=y,则x+3=y+3B.若x=y,则x﹣3=y﹣3
C.若x=y,则﹣3x=﹣3yD.若x2=y2,则x=y
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走3米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端E的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°.已知A点离地面的高度AB=2米,∠BCA=30°,且B、C、D三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=-x+m的图象和y轴交于点B,与正比例函数y=x图象交于点P (2,n).
(1)求m和n的值;
(2)求△POB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,已知直线l1∥l2,且l3和l1,l2分别相交于A,B两点,l4和l1,l2分别交于C,D两点,∠ACP=∠1,∠BDP=∠2,∠CPD=∠3,
点P在线段AB上.
(1)若∠1=22°,∠2=33°,则∠3=________;
(2)试找出∠1,∠2,∠3之间的等量关系,并说明理由;
(3)应用(2)中的结论解答下列问题;
如图②,点A在B处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;
(4)如果点P在直线l3上且在A,B两点外侧运动时,其他条件不变,试探究∠1,∠2,∠3之间的关系(点P和A,B两点不重合),直接写出结论即可.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:

根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为 ;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有 人,补全条形统计图.
(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?
(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.
相关试题