【题目】某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:
等级(x级) | 一级 | 二级 | 三级 | … |
生产量(y台/天) | 78 | 76 | 74 | … |
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:;
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?
参考答案:
【答案】
(1)y=﹣2x+80
(2)
解:设工厂生产x等级的护眼灯时,获得的利润为w元.
由题意,有w=[21+1(x﹣1)]y
=[21+1(x﹣1)](﹣2x+80)
=﹣2(x﹣10)2+1800,
所以当x=10时,可获得最大利润1800元.
故若工厂将当日所生产的护眼灯全部售出,工厂应生产十级的护眼灯时,能获得最大利润,最大利润是1800元
【解析】解:(1)由题意,设y=kx+b.
把(1,78)、(2,76)代入,
得
,解得
,
∴y与x之间的函数关系式为y=﹣2x+80.
所以答案是y=﹣2x+80;
【分 析】(1)由于护眼灯每天的生产量y(台)是等级x(级)的一次函数,所以可设y=kx+b,再把(1,78)、(2,76)代入,运用待定系数法即可求 出y与x之间的函数关系式;(2)设工厂生产x等级的护眼灯时,获得的利润为w元.由于等级提高时,带来每台护眼灯利润的提高,同时销售量下降.而x等级 时,每台护眼灯的利润为[21+1(x﹣1)]元,销售量为y元,根据:利润=每台护眼灯的利润×销售量,列出w与x的函数关系式,再根据函数的性质即可 求出最大利润.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC切于点E,且AB=BE

(1)求证:AB是⊙O的切线;
(2)过D点作DF∥BC交⊙O于点F,求线段DF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在矩形ABCD中,
,
分别是边
,
的中点,
,
分别是线段
,
的中点.(1)求证:
≌
;(2)判断四边形
是什么特殊四边形,并证明你的结论;(3)当四边形
是正方形时,求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,A(-
,0),B(0,1)分别为x轴,y轴上的点,△ABC为等边三角形,点P(3,a)在第一象限内,且满足2S△ABP=S△ABC,则a的值为( )
A.
B.
C.
D. 2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,铁路上A,B两点相距25 km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=16 km,CB=11 km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A站多少km处?

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)27-18+43-32
(3)(+
)﹣(﹣
)﹣|﹣3| (4)
(5)﹣64÷3
×
; (6)∣-2∣
2+∣+7∣
7+∣0∣(7)
(8) 
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.

(1)当∠BAC=∠MBN=90°时,
①如图a,当θ=45°时,∠ANC的度数为△;
②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;
(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.
相关试题