【题目】作图与探究:
如图,△ABC中,AB=AC.
![]()
(1)作图:①画线段BC的垂直平分线l,设l与BC边交于点H;
②在射线HA上画点D,使AD=AB,连接BD. (不写作法,保留作图痕迹)
(2)探究:∠D与∠C有怎样的数量关系? 并证明你的结论.
参考答案:
【答案】(1)①画垂直平分线见解析;②画点D见解析;(2)∠C+2∠D=90°. 证明见解析.
【解析】
(1)①根据以点B和点C为圆心,以大于BC的一半为半径画弧,过两弧的交点作直线l,则l即为所求;②以点A为圆心,AB长为半径画弧,交射线HA于点D,点D为所求;
(2)由AB=AC=AD,则∠ABC=∠C,∠ABD=∠D,利用余角的性质,即可得到2∠D+∠C=90°.
解:(1)①如图所示,直线l为所求;
②如图所示,点D为所求;
![]()
(2)由(1)可知,直线l为BC的垂直平分线,
∴AB=AC,
∴∠ABC=∠C,
∵AB=AD,
∴∠ABD=∠D,
∵∠AHB=90°,
∴∠D+∠ABD+∠ABC=90°,
∴2∠D+∠C=90°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设
,
,
,请探索
,
,
满足的等量关系。
-
科目: 来源: 题型:
查看答案和解析>>【题目】近年来,人们对PM2.5 (空气中直径小于等于2.5微米的颗粒)的关注日益密切.我市某天中PM2.5的值y1 (u g/m3) 随时间t (h)的变化如图所示,设y2表示0时,到t时PM2.5的最大值与最小值的差,则y2与t的函数关系大致是 ( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的延长线交于点E.
(1)求证:直线CD为⊙O的切线;
(2)当AB=2BE,且CE=时,求AD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克)
50
60
70
销售量y(千克)
100
80
60
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把三根长为3cm、4cm和5cm的细木棒首尾相连,能搭成一个直角三角形.
(1)如果把这三根细木棒的长度分别扩大为原来的a倍(a>1),那么所得的三根细木棒能不能搭成一个直角三角形, 为什么?
(2)如果把这三根细木棒的长度分别延长x cm(x>0),那么所得的三根细木棒还能搭成一个三角形吗?为什么?如果能,请判断这个三角形的形状(锐角三角形、直角三角形还是钝角三角形),并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2017贵州省遵义市)如图,抛物线
(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为
.(1)求该抛物线的函数关系式与C点坐标;
(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?
(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);
①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,
始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;②试求出此旋转过程中,(NA+
NB)的最小值.
相关试题