【题目】如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE;
![]()
(1)求证:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度数.
参考答案:
【答案】(1)证明见解析;(2)70°.
【解析】
试题分析:(1)根据中点的定义可得:AC=BC,根据角平分线的定义可证∠ACD=∠BCE,利用SAS可证△ACD≌△BCE;
(2)根据角平分线的定义可以求出∠BCE=60°,根据全等三角形对应角相等可以求出∠E=∠D=50°,根据三角形内角和定理可以求出∠B的度数.
试题解析:(1)∵C是线段AB的中点,
∴AC=BC,
∵CD平分∠ACE,
∴∠ACD=∠DCE,
∵CE平分∠BCD,
∴∠BCE=∠DCE,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
(2)∵∠ACD=∠BCE=∠DCE,且∠ACD+∠BCE+∠DCE=180°,
∴∠BCE=60°,
∵△ACD≌△BCE,
∴∠E=∠D=50°,
∴∠B=180°-(∠E+∠BCE)= 180°-(50°+60°)=70°
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点(A与B不重合),直线AB与x轴交于P(x0,0),与y轴交于点C.

(1)若A,B两点坐标分别为(1,3),(3,y2),求点P的坐标.
(2)若b=y1+1,点P的坐标为(6,0),且AB=BP,求A,B两点的坐标.
(3)结合(1),(2)中的结果,猜想并用等式表示x1,x2,x0之间的关系(不要求证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AC=BC,∠ACB=900,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD。下列结论:
①AC+CE=AB;②CD=
,③∠CDA=450 ,④
为定值。其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.

(1)求证:OF∥BE;
(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;
(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)某体育馆计划从一家体育用品商店一次性购买若干个气排球和篮球(每个气排球的价格都相同,每个篮球的价格都相同).经洽谈,购买1个气排球和2个篮球共需210元;购买2个气排球和3个篮球共需340元.
(1)每个气排球和每个篮球的价格各是多少元?
(2)该体育馆决定从这家体育用品商店一次性购买气排球和篮球共50个,总费用不超过3200元,且购买气排球的个数少于30个,应选择哪种购买方案可使总费用最低?最低费用是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一元二次方程
满足
,那么我们称这个方程为“阿凡达”方程,已知
是“阿凡达”方程,且有两个相等的实数根,则下列结论正确的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将方程x2-8x=10化为一元二次方程的一般形式,其中一次项系数、常数项分别是( )
A.-8、-10B.-8、10C.8、-10D.8、10
相关试题