【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=
CD,从而得出结论:AC+BC=
CD.
简单应用:
(1)在图①中,若AC=
,BC=
,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,
,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=
AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 .
![]()
参考答案:
【答案】(1)3;(2)
;(3)
;(4)
PQ=
AC或
PQ=
AC.
【解析】
试题分析:(1)由题意可知:AC+BC=
CD,所以将AC与BC的长度代入即可得出CD的长度;
(2)连接AC、BD、AD即可将问题转化为第(1)问的问题,利用题目所给出的证明思路即可求出CD的长度;
(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,由(2)问题可知:AC+BC=
CD1;又因为CD1=D1D,所以利用勾股定理即可求出CD的长度;
(4)根据题意可知:点E的位置有两种,分别是当点E在直线AC的右侧和当点E在直线AC的左侧时,连接CQ、CP后,利用(2)和(3)问的结论进行解答.
试题解析:(1)由题意知:AC+BC=
CD,∴
=
CD,∴CD=3,;
(2)连接AC、BD、AD,∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵
,∴AD=BD,将△BCD绕点D,逆时针旋转90°到△AED处,如图③,∴∠EAD=∠DBC,∵∠DBC+∠DAC=180°,∴∠EAD+∠DAC=180°,∴E、A、C三点共线,∵AB=13,BC=12,∴由勾股定理可求得:AC=5,∵BC=AE,∴CE=AE+AC=17,∵∠EDA=∠CDB,∴∠EDA+∠ADC=∠CDB+∠ADC,即∠EDC=∠ADB=90°,∵CD=ED,∴△EDC是等腰直角三角形,∴CE=
CD,∴CD=
;
(3)以AB为直径作⊙O,连接OD并延长交⊙O于点D1,连接D1A,D1B,D1C,如图④
由(2)的证明过程可知:AC+BC=
D1C,∴D1C=
,又∵D1D是⊙O的直径,∴∠DCD1=90°,∵AC=m,BC=n,∴由勾股定理可求得:
,∴
,∵
,∴
=
=
,∵m<n,∴CD=
;
(3)当点E在直线AC的左侧时,如图⑤,连接CQ,PC,∵AC=BC,∠ACB=90°,点P是AB的中点,∴AP=CP,∠APC=90°,又∵CA=CE,点Q是AE的中点,∴∠CQA=90°,设AC=a,∵AE=
AC,∴AE=
a,∴AQ=
AE=
,由勾股定理可求得:CQ=
a,由(2)的证明过程可知:AQ+CQ=
PQ,∴
PQ=
a,∴
PQ=
AC;
当点E在直线AC的右侧时,如图⑥,连接CQ、CP,同理可知:∠AQC=∠APC=90°,设AC=a,∴AQ=
AE=
,由勾股定理可求得:CQ=
a,由(3)的结论可知:PQ=
(CQ﹣AQ),∴
PQ=
AC.
综上所述,线段PQ与AC的数量关系是
PQ=
AC或
PQ=
AC.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠α的补角为60°,∠β的余角为60°,则∠α和∠β的大小关系是
A. ∠α<∠β B. ∠α>∠β C. ∠α=∠β D. 无法确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题提出
(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.
问题探究
(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.
问题解决
(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=
米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD.AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列四个选项中,不适合普查的是
A. 了解全班同学每周体育锻炼的时间
B. 学校招聘新教师,对应聘教师面试
C. 鞋厂检查生产鞋底能承受的弯折次数
D. 安庆市某中学调查九年级全体540名学生数学成绩
-
科目: 来源: 题型:
查看答案和解析>>【题目】2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为( )
A.3×106
B.3×105
C.0.3×106
D.30×104 -
科目: 来源: 题型:
查看答案和解析>>【题目】若+800元表示盈利800元,那么﹣300元表示( )
A. 收入300元 B. 盈利300元 C. 亏损300元 D. 支出300元
相关试题