【题目】如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.
(1)若∠AOB=60,OM=4,OQ=1,求证:CN⊥OB.
(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.
①问:
的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由.
![]()
②设菱形OMPQ的面积为S1,△NOC的面积为S2,求
的取值范围.
参考答案:
【答案】(1)CN⊥OB;(2)①
②0<
≤
【解析】试题分析:(1)过P作PE⊥OA于E,易证四边形OMPQ为平行四边形.根据三角函数求得PE的长,再根据三角函数求得∠PCE的度数,即可得∠CPM=90,又因PM∥OB,即可证明CN⊥OB.(2)①设OM=x,ON=y,先证△NQP∽△NOC,即可得
,把x,y代入整理即可得
-
的值.②过P作PE⊥OA于E,过N作NF⊥OA于F,可得S1=OM·PE,S2=
OC·NF,所以
=
.再证△CPM∽△CNO,所以
=
=
,用x表示出
与x的关系,根据二次函数的性质即可得
的取值范围.
试题解析:(1)
![]()
过P作PE⊥OA于E.∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形.
∴PM=OQ=1,∠PME=∠AOB=60,
∴PE=PM·sin60=
,ME=
,
∴CE=OC-OM-ME=
,∴tan∠PCE=
=
,
∴∠PCE=30,∴∠CPM=90,
又∵PM∥OB,/span>∴∠CNO=∠CPM=90 ,即CN⊥OB.
(2)①
-
的值不发生变化. 理由如下:
设OM=x,ON=y.∵四边形OMPQ为菱形,∴ OQ=QP=OM=x,NQ=y-x.
∵PQ∥OA,∴∠NQP=∠O.又∵∠QNP=∠ONC,∴△NQP∽△NOC,∴
=
,即
=
,
∴6y-6x=xy.两边都除以6xy,得
-
=
,即
-
=
.
②过P作PE⊥OA于E,过N作NF⊥OA于F,
![]()
则S1=OM·PE,S2=
OC·NF,
∴
=
.
∵PM∥OB,∴∠MCP=∠O.又∵∠PCM=∠NCO,
∴△CPM∽△CNO.∴
=
=
.
∴
=
=-
(x-3)2+
.
∵0<x<6,由这个二次函数的图像可知,0<
≤
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)先化简,再求值:x2﹣2(x2﹣3xy)+3(y2﹣2xy)﹣2y2,其中x=
,y=﹣1;(2)已知x+y=6,xy=﹣1,求代数式2(x+1)﹣(3xy﹣2y)的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.

(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向.
(1)图中A→C( , ),B→C( , ),C→ (+1, );
(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P的位置;

(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;
(4)若图中另有两个格点M、N,且M→A(3-a,b-4),M→N(5-a,b-2),则N→A应记为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B、C、D四个车站的位置如图所示,A、B两站之间的距离AB=a﹣b,B、C两站之间的距离BC=2a﹣b,B、D两站之间的距离BD=
.(1)求A、C两站之间的距离AC.
(2)若A、C两站之间的距离AC=90km,求C、D两站之间的距离CD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,纸上有五个边长为1的小正方形组成的图形纸(图1),我们可以把它剪开拼成一个正方形(图2).

(1)图2中拼成的正方形的面积是 _________ ;边长是 _________ ;(填实数)
(2)请你在图3中画一个面积为5的正方形,要求所画正方形的顶点都在格点上.请用虚线画出.
(3)你能把十个小正方形组成的图形纸(图4),剪开并拼成正方形吗?若能,请仿照图2的形式把它重新拼成一个正方形.并求出它的边长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为a的正方形,B种纸片是边长为b的正方形,C种纸片长为a、宽为b的长方形.并用A种纸片一张,B种纸片张,C种纸片两张拼成如图2的大正方形.

(1)请用两种不同的方法求图2大正方形的面积.
方法1: ;方法2:
(2)观察图2,请你写出下列三个代数式:(a+b)2,a2+b2,ab之间的等量关系.
(3)根据(2)题中的等量关系,解决如下问题:
①已知:a+b=5,a2+b2=11,求ab的值;
②已知(2018﹣a)2+(a﹣2017)2=5,求(2018﹣a)(a﹣2017)的值.
相关试题