【题目】在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(备注:在直角三角形中30度角所对的边是斜边的一半)
![]()
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
参考答案:
【答案】(1)、证明过程见解析;(2)、t=10;(3)、t=
或12,理由见解析
【解析】
试题分析:(1)、根据Rt△ABC的性质得出AB=30cm,根据CD=4t,AE=2t以及Rt△CDF的性质得出答案;(2)、根据DF∥AB,DF=AE,得出四边形AEFD是平行四边形,根据菱形的性质得出t的值;(3)、本题需要分两种情况分别进行计算.当∠EDF=90°时,AD=2AE,从而求出t的值;当∠DEF=90°时,AE=2AD,从而求出t的值.
试题解析:(1)、∵在Rt△ABC中,∠C=90°﹣∠A=30°, ∴AB=
AC=
×60=30cm
∵CD=4t,AE=2t, 又∵在Rt△CDF中,∠C=30°,∴DF=
CD=2t ∴DF=AE
(2)、能。
∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形
当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10
∴当t=10时,AEFD是菱形
(3)、若△DEF为直角三角形,有两种情况:
①如图1,∠EDF=90°,DE∥BC,
![]()
则AD=2AE,即60﹣4t=2×2t,解得:t=
。
②如图2,∠DEF=90°,DE⊥AC,
![]()
则AE=2AD,即2t=2(60-4t),解得:t=12。
综上所述,当t=
或12时,△DEF为直角三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果一个实数的平方根与它的立方根相等,则这个数是( )
A. 0 B. 正整数 C. 0和1 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列长度的三条线段能组成三角形的一组是( )
A. 1,2,3 B. 4,5,9 C. 4,6,8 D. 5,5,11
-
科目: 来源: 题型:
查看答案和解析>>【题目】将内直径为20cm的圆柱形水桶中的全部水倒入一个长、宽、高分别为30cm,20cm,62.8cm的长方体铁盒中,正好倒满,求圆柱形水桶的高.(π取3.14)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D, AB=AD.

(1)试说明△ABC≌△ADE;
(2)如果∠AEC=75°,将△ADE绕点A旋转一个锐角后与△ABC重合,求这个旋转角的大小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某九年级制学校围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:

(1)该校对多少学生进行了抽样调查?
(2)本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?
(3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列事件中,确定事件是( )
A. 早晨太阳从西方升起
B. 打开电视机,它正在播动画片
C. 掷一枚硬币,正面向上
D. 任意买一张电影票,座位号是2的倍数
相关试题