【题目】我市某风景区门票价格如图所示,黄冈赤壁旅游公司有甲、乙两个旅游团队,计划在“五一”小黄金周期间到该景点游玩.两团队游客人数之和为120人,乙团队人数不超过50人,设甲团队人数为x人.如果甲、乙两团队分别购买门票,两团队门票款之和为W元. ![]()
(1)求W关于x的函数关系式,并写出自变量x的取值范围;
(2)若甲团队人数不超过100人,请说明甲、乙两团队联合购票比分别购票最多可可节约多少钱;
(3)“五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50人时,门票价格不变;人数超过50人但不超过100人时,每张门票降价a元;人数超过100人时,每张门票降价2a元,在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,甲乙两团队联合购票比分别购票最多节约3400元,求a的值.
参考答案:
【答案】
(1)解:∵甲团队人数为x人,乙团队人数不超过50人,
∴120﹣x≤50,
∴x≥70,
①当70≤x≤100时,W=70x+80(120﹣x)=﹣10x+9600,
②当100<x<120时,W=60x+80(120﹣x)=﹣20x+9600,
综上所述,W= ![]()
(2)解:∵甲团队人数不超过100人,
∴x≤100,
∴W=﹣10x+9600,
∵70≤x≤100,
∴x=70时,W最大=8900(元),
两团联合购票需120×60=7200(元),
∴最多可节约8900﹣7200=1700(元).
(3)解:∵x≤100,
∴W=(70﹣a)x+80(120﹣x)=﹣(a+10)x+9600,
∴x=70时,W最大=﹣70a+8900(元),
两团联合购票需120(60﹣2a)=7200﹣240a(元),
∵﹣70a+8900﹣(7200﹣240a)=3400,
解得:a=10.
【解析】(1)根据甲团队人数为x人,乙团队人数不超过50人,得到x≥70,分两种情况:①当70≤x≤100时,W=70x+80(120﹣x)=﹣10x+9600,②当100<x<120时,W=60x+80(120﹣x)=﹣20x+9600,即可解答;(2)根据甲团队人数不超过100人,所以x≤100,由W=﹣10x+9600,根据70≤x≤100,利用一次函数的性质,当x=70时,W最大=8900(元),两团联合购票需120×60=7200(元),即可解答;(3)根据每张门票降价a元,可得W=(70﹣a)x+80(120﹣x)=﹣(a+10)x+9600,利用一次函数的性质,x=70时,W最大=﹣70a+8900(元),而两团联合购票需120(60﹣2a)=7200﹣240a(元),所以﹣70a+8900﹣(7200﹣240a)=3400,即可解答.
-
科目: 来源: 题型:
查看答案和解析>>【题目】当今社会手机越来越普及,有很多人开始过份依赖手机,一天中使用手机时间过长而形成了“手机瘾”.为了解我校初三年级学生的手机使用情况,学生会随机调查了部分学生的手机使用时间,将调查结果分成五类:A、基本不用;B、平均一天使用1~2小时;C、平均一天使用2~4小时;D、平均一天使用4~6小时;E、平均一天使用超过6小时.并用得到的数据绘制成了如下两幅不完整的统计图(图1、2),请根据相关信息,解答下列问题:

(1)将上面的条形统计图补充完整;
(2)若一天中手机使用时间超过6小时,则患有严重的“手机瘾”.我校初三年级共有1490人,试估计我校初三年级中约有多少人患有严重的“手机瘾”;
(3)在被调查的基本不用手机的4位同学中有2男2女,现要从中随机再抽两名同学去参加座谈,请你用列表法或树状图方法求出所选两位同学恰好是一名男同学和一位女同学的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,我市某中学在创建“特色校园”的活动中,将奉校的办学理念做成宣传牌(CD),放置在教学楼的顶部(如图所示)该中学数学活动小组在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿坡面AB向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度为i=1:
,AB=10米,AE=15米.(i=1:
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平而AE的高度BH;
(2)求宣传牌CD的高度.
(结果精确到0.1米.参考数据:
≈1.414,
≈1.732) -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0
(1)求证:无论k为任何实数,方程总有实数根;
(2)若此方程有两个实数根x1 , x2 , 且|x1﹣x2|=2,求k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1 , 旋转角为θ(0°<θ<90°),连接AC1、BD1 , AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1 .
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=5,BD=7,设AC1=kBD1 . 判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=5,BD=10,连接DD1 , 设AC1=kBD1 . 请直接写出k的值和AC12+(kDD1)2的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,抛物线y=ax2+bx+3(a≠0)与x轴、y轴分别交于点A(﹣1,0)、B(3,0)、点C三点.

(1)试求抛物线的解析式;
(2)点D(2,m)在第一象限的抛物线上,连接BC、BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
(3)如图2,在(2)的条件下,将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为t秒,试求S与t之间的函数关系式?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148
(1)计算该样本数据的中位数和平均数;
(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何?
相关试题