【题目】数学课上小明用一副三角板进行如下操作:把一副三角板中两个直角的顶点重合,一个三角板固定不动,另一个三角板绕着重合的顶点旋转(两个三角板始终有重合部分).
(1)当旋转到如图所示的位置时,量出∠α=25°,通过计算得出∠AOD=∠BOC= ;
(2)通过几次操作小明发现,∠α≠25°时.∠AOD=∠BOC仍然成立,请你帮他完成下面的说理过程.
理由:因为∠AOC=∠BOD= ;
所以,根据等式的基本性质∠ ﹣∠COD=∠BOD﹣∠ ;
即∠AOD=∠ .
(3)小莹还发现在旋转过程中∠AOB和∠DOC之间存在一个不变的数量关系,请你用等式表示这个数量关系 .
![]()
参考答案:
【答案】(1)65°;(2)90°,AOC,COD,BOC;(3)∠AOB+∠COD=180°.
【解析】
(1)根据角的和差即可得到结论;
(2)根据等式的基本性质即可得到结论;
(3)根据角的和差和补角的定义即可得到结论.
解:(1)∵∠AOC=∠BOD=90°,
∴∠AOD=∠BOC=90°﹣α=90°﹣25°=65°;
(2)因为∠AOC=∠BOD=90°,
所以,根据等式的基本性质∠AOC﹣∠COD=∠BOD﹣∠COD,
即∠AOD=∠BOC;
(3)∵∠COD=∠AOC﹣∠AOD=90°﹣∠AOD,∠AOB=∠BOD+∠AOD=90°+∠AOD,
∴∠AOB+∠COD=90°+∠AOD+90°﹣∠AOD=180°.
故答案为:(1)65°;(2)90°,AOC,COD,BOC;(3)∠AOB+∠COD=180°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,半径为2的圆被分成甲、乙、丙三个扇形,它们的面积之比为3:2:5.请回答下列问题.
(1)扇形甲的圆心角为 ;
(2)剪下扇形丙恰好能围成一个几何体的侧面,这个几何体的名称是 .
(3)现有半径分别为1,2,3的三个圆形纸片,从中选择一个恰好和扇形丙组成(2)中的几何体(不考虑接缝的大小),求这个几何体的表面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B,C为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.
(1)求证:AD∥EC;
(2)连接EA,若BC=6,则当CD= 时,四边形EBCA是矩形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.

(1)如图1,当PD∥AB 时,求PD的长;
(2)如图2,当BP平分∠OPD时,求PC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.

-
科目: 来源: 题型:
查看答案和解析>>【题目】生活与数学
(1)莹莹在日历上圈出三个数,呈大写的“一”字,这三个数的和是中间数的 倍,莹莹又在日历上圈出5个数,呈“十”字框形,它们的和是50,则中间的数是 :
(2)小丽同学也在某月的日历上圈出如图所示“七”字形,发现这八个数的和是125,那么这八个数中最大数为 :
(3)在第(2)题中这八个数之和 为101(填“能”或“不能”).

-
科目: 来源: 题型:
查看答案和解析>>【题目】有个填写运算符号的游戏:在“
□
□
□
”中的每个“口”内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:

(2)若
口
请推算“口”内的运算符号.(3)在“
□
□
□
”的“口”内填入运算符号后,使计算所得的数最小,直接写出这个最小的数.
相关试题