【题目】如图,直线y=x+m与双曲线y=
相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为_____.
![]()
参考答案:
【答案】6
【解析】
根据双曲线y=
过A,B两点,可设A(a,
),B(b,
),则C(a,
).将y=x+m代入y=
,整理得x2+mx-3=0,由于直线y=x+m与双曲线y=
相交于A,B两点,所以a、b是方程x2+mx-3=0的两个根,根据根与系数的关系得出a+b=-m,ab=-3,那么(a-b)2=(a+b)2-4ab=m2+12.再根据三角形的面积公式得出S△ABC=
ACBC=
m2+6,利用二次函数的性质即可求出当m=0时,△ABC的面积有最小值6.
设A(a,
),B(b,
),则C(a,
).
将y=x+m代入y=
,得x+m=
,
整理,得x2+mx-3=0,
则a+b=-m,ab=-3,
∴(a-b)2=(a+b)2-4ab=m2+12.
∵S△ABC=
ACBC
=
(
-
)(a-b)
=![]()
(a-b)
=
(a-b)2
=
(m2+12)
=
m2+6,
∴当m=0时,△ABC的面积有最小6.
故答案为6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )
A. 1一定不是关于x的方程x2+bx+a=0的根
B. 0一定不是关于x的方程x2+bx+a=0的根
C. 1和﹣1都是关于x的方程x2+bx+a=0的根
D. 1和﹣1不都是关于x的方程x2+bx+a=0的根
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),
C(3,4)
⑴ 作出与△ABC关于y轴对称△A1B1C1,并写出 三个顶点的坐标为:A1( ),B1( ),C1( );
⑵ 在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;
⑶ 在 y 轴上是否存在点 Q,使得S△AOQ=
S△ABC,如果存在,求出点 Q 的坐标,如果不存在,说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:△ABC是等边三角形.
(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.试判断BF与CF的数量关系,并加以证明;
(2)点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.若△BFD是等腰三角形,求∠FBD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
(1)求∠BDF的大小;
(2)求CG的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠ABC=90°, D是直线AB上的点,AD=BC ,过点A作AF⊥AB,并截取AF=DB ,连接DC、DF、CF ,判断△CDF的形状并证明.

相关试题