【题目】如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.
(1)求证:四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.
![]()
参考答案:
【答案】(1)证明见试题解析;(2)∠B=30°,证明见试题解析.
【解析】试题分析:(1)易证∠DEC=∠DFA,即可得CE∥AF,根据CE=AF可得四边形ACEF为平行四边形;
(2)要使得平行四边形ACEF为菱形,则AC=CE,又∵CE=
AB,∴使得AB=2AC即可,根据AB、AC即可求得∠B的值.
试题解析:(1)∵DE为BC的垂直平分线,
∴∠EDB=90°,BD=DC,
又∵∠ACB=90°,
∴DE∥AC,
∴E为AB的中点,
∴在Rt△ABC中,CE=AE=BE,
∴∠AEF=∠AFE,且∠BED=∠AEF,
∠DEC=∠DFA,
∴AF∥CE,
又∵AF=CE,
∴四边形ACEF为平行四边形;
(2)要使得平行四边形ACEF为菱形,则AC=CE即可,
∵DE∥AC,∴∠BED=∠BAC,∠DEC=∠ECA,
又∵∠BED=∠DEC,
∴∠EAC=∠ECA,
∴AE=EC,又EB=EC,
∴AE=EC=EB,
∵CE=
AB,
∴AC=
AB即可,
在Rt△ABC中,∠ACB=90°,
∴当∠B=30°时,AB=2AC,
故∠B=30°时,四边形ACEF为菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.

(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;
(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系;
(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】若(x+y)(1﹣x﹣y)+6=0,则x+y的值是( )
A.2
B.3
C.﹣2或3
D.2或﹣3 -
科目: 来源: 题型:
查看答案和解析>>【题目】2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图. 根据上述信息,解答下列问题:

(1)本次抽取的学生人数是 ______ ;扇形统计图中的圆心角α等于 ______ ;补全统计直方图;
(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】多项式﹣6y3+4xy2﹣x2+3x3y是按( )排列.
A.x的升幂
B.x的降幂
C.y的升幂
D.y的降幂 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b为实数,(a2+b2)2﹣(a2+b2)﹣6=0,则代数式a2+b2的值为( )
A.2
B.3
C.﹣2
D.3或﹣2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC和△BDE都是等边三角形,且A,E,D三点在一直线上.请你说明DA﹣DB=DC.

相关试题