【题目】如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)如图1,请你写出AB与AP所满足的数量关系和位置关系;
(2)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点O,连接AP,BO.猜想并写出BO与AP所满足的数量关系和位置关系,并说明理由;
(3)将△EFP沿直线l继续向左平移到图3的位置时,EP的延长线交AC的延长线于点O,连接AP,BO.此时,BO与AP还具有(2)中的数量关系和位置关系吗?请说明理由.
![]()
参考答案:
【答案】(1)AP=AB,AP⊥AB;(2)AP=BO,AP⊥BO;(3)AP=BO,AP⊥BO.
【解析】整体分析:
(1)根据△ABC与△EFP是全等的等腰直角三角形,判断△ABP是等腰直角三角形;(2)用SAS证明△ACP≌△BCO得到AP=BO,∠CAP=∠CBO,结合三角形的内角和可得BO⊥AP;(3)结合与理由和(2)类似.
解:(1)∵AC⊥BC,且AC=BC,边EF与边AC重合,且EF=FP.
∴△ABC与△EFP是全等的等腰直角三角形,
∴∠BAC=∠CAP=45°,AB=AP,
∴∠BAP=90°,
∴AP=AB,AP⊥AB;
(2)AP=BO,AP⊥BO.理由如下:
延长BO交AP于H点,如图2
∵∠EPF=45°,
∴△OPC为等腰直角三角形,
∴OC=PC,
∵在△ACP和△BCO中
![]()
∴△ACP≌△BCO(SAS),
∴AP=BO,∠CAP=∠CBO,
又∵∠AOH=∠BOC,
∴∠AHO=∠BCO=90°,
∴AP⊥BO,
即BO与AP所满足的数量关系为相等,位置关系为垂直;
![]()
(3)BO与AP所满足AP=BO,AP⊥BO.理由如下:
延长OB交AP于点H,如图3,
∵∠EPF=45°,
∴∠CPO=45°,
∴△CPO为等腰直角三角形,
∴OC=PC,
∵在△APC和△OBC中,
![]()
∴△APC≌△BOC(SAS),
∴AP=BO,∠APC=∠COB,
而∠PBH=∠CBO,
∴∠PHB=∠BCO=90°,
∴BO⊥AP,
即BO与AP所满足的数量关系为相等,位置关系为垂直.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( )
A.1种 B.2种 C.3种 D.4种
-
科目: 来源: 题型:
查看答案和解析>>【题目】李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行于x轴的直线AC分别交抛物线
(x≥0)与
(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则
=_.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个三角形的一边长为3 cm,则它的周长可能为( )
A. 4 cm B. 5 cm C. 6 cm D. 8 cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知sinA=0.1782,则锐角A的度数大约为( )
A.8°
B.9°
C.10°
相关试题