【题目】已知,如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=3,连接DE.
![]()
(1)DE的长为 .
(2)动点P从点B出发,以每秒1个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?
(3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.
参考答案:
【答案】(1)5;(2)当t为3秒或13秒时,△ABP和△DCE全等;(3)t的值为3或4或
.
【解析】
(1)根据矩形的性质可得CD=4,根据勾股定理可求DE的长;
(2)若△ABP与△DCE全等,可得AP=CE=3或BP=CE=3,根据时间=路程÷速度,可求t的值;
(3)分PD=DE,PE=DE,PD=PE三种情况讨论,分别利用等腰三角形的性质和勾股定理求出BP,即可得到t的值.
解:(1)∵四边形ABCD是矩形,
∴AB=CD=4,AD=BC=6,CD⊥BC,
在Rt△DCE中,DE=
=5,
故答案为 5;
(2)若△ABP与△DCE全等,则BP=CE或AP=CE,
当BP=CE=3时,则t=
=3秒,
当AP=CE=3时,则t=
=13秒,
∴当t为3秒或13秒时,△ABP和△DCE全等;
(3)若△PDE为等腰三角形,则PD=DE或PE=DE或PD=PE,
当PD=DE时,
∵PD=DE,DC⊥BE,
∴PC=CE=3,
∵BP=BCPC=3,
∴t=
=3;
当PE=DE=5时,
∵BP=BEPE,
∴BP=6+35=4,
∴t=
=4;
当PD=PE时,
∴PE=PC+CE=3+PC,
∴PD=3+PC,
在Rt△PDC中,PD2=CD2+PC2,
∴(3+PC)2=16+PC2,
∴PC=
,
∵BP=BCPC=
,
∴
,
综上所述:t的值为3或4或
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形OABC的顶点A,C分别在x轴,y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转60°得到线段OP,连接AP,反比例函数
(k≠0)的图象经过P,B两点,则k的值为______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC

①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.
(1)求证:△ABD≌△ACE;
(2)求证:CE平分∠ACF;
(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(问题情境)如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
(1)(问题解决)延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断出中线AD的取值范围是 .
(反思感悟)解题时,条件中若出现“中点”、“中线”字样,可以考虑构造以该中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同个三角形中,从而解决问题.
(2)(尝试应用)如图②,△ABC中,∠BAC=90°,AD是BC边上的中线,试猜想线段AB,AC,AD之间的数量关系,并说明理由.
(3)(拓展延伸)如图③,△ABC中,∠BAC=90°,D是BC的中点,DM⊥DN,DM交AB于点M,DN交AC于点N,连接MN.当BM=4,MN=5,AC=6时,请直接写出中线AD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=
∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.
(1)思路梳理
将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合,由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线,易证△AFG≌△AFE,故EF,BE,DF之间的数量关系为__;
(2)类比引申
如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC延长线上,∠EAF=
∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°,若BD=1,EC=2,直接写出DE的长为________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数y=﹣x+b与反比例函数y=
(k≠0)的图象相交于点P,则关于x的方程﹣x+b=
的解是_____.
相关试题