【题目】如图,直线y=﹣
x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:
(1)点B′的坐标;
(2)直线AM所对应的函数关系式.
![]()
参考答案:
【答案】(1)B'的坐标为:(﹣4,0);(2)直线AM的解析式为:y=﹣
x+3.
【解析】试题分析:(1)先确定点A、点B的坐标,再由AB=AB',可得AB'的长度,求出OB'的长度,即可得出点B'的坐标;
(2)设OM=m,则B'M=BM=8﹣m,在Rt△OMB'中利用勾股定理求出m的值,得出M的坐标后,利用待定系数法可求出AM所对应的函数解析式.
解:(1)y=﹣x+8,
令x=0,则y=8,
令y=0,则x=6,
∴A(6,0),B(0,8),
∴OA=6,OB=8 AB=10,
∵A B'=AB=10,
∴O B'=10﹣6=4,
∴B'的坐标为:(﹣4,0).
(2)设OM=m,则B'M=BM=8﹣m,
在Rt△OMB'中,m2+42=(8﹣m)2,
解得:m=3,
∴M的坐标为:(0,3),
设直线AM的解析式为y=kx+b,
则
,
解得:
,
故直线AM的解析式为:y=﹣x+3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某日孙老师佩戴运动手环进行快走锻炼,两次锻炼后数据如下表.与第一次锻炼相比,孙老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.根据经验已知孙老师第二次锻炼时平均步长减少的百分率小于0.5.
项目
第一次锻炼
第二次锻炼
步数(步)
10000
①
平均步长(米/步)
0.6
②
距离(米)
6000
7020
注:步数×平均步长=距离.
(1)求孙老师第二次锻炼时平均步长减少的百分率;
(2)孙老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求孙老师这500米的平均步长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒
个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.(1)当t=5秒时,点P走过的路径长为_________;当t=_________秒时,点P与点E重合;
(2)当点P在AC边上运动时,连结PE,并过点E作AB的垂线,垂足为H. 若以C、P、E为顶点的三角形与△EFH相似,试求线段EH的值;
(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点Q.在运动过程中,若形成的四边形PEQF为菱形,求t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二元一次方程5x+(k-1)y = 8的一 个解是:x=1,y=-3,k的值是_______
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(2x2)3﹣2x2x3+2x5;
(2)(x+y+2)(x+y﹣2)﹣(x+2y)2+3y2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】以下列长度的三条线段为边,能组成三角形的是( )
A.4,8,3B.3,4,5C.3,3,6D.3,10,6
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二元一次方程5x+y=9,若用含x的代数式表示y,则有y=_____.
相关试题