【题目】如图,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.
(1)求证:EF是⊙O的切线.
(2)如果⊙O的半径为5,sin∠ADE=
,求BF的长.
![]()
参考答案:
【答案】(1)答案见解析;(2)
.
【解析】试题分析:(1)连接OD,AB为⊙O的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠DAC=∠DAB,根据等角的余角相等得∠ADE=∠ABD,在Rt△ADB中,利用解直角三角形的方法可计算出AD=8,在Rt△ADE中可计算出AE=
,然后由OD∥AE,得△FDO∽△FEA,再利用相似比可计算出BF.
试题解析:(1)证明:连结OD
![]()
∵OD=OB∴∠ODB=∠DBO
又AB=AC
∴∠DBO=∠C
∴∠ODB =∠C
∴OD ∥AC
又DE⊥AC
∴DE ⊥OD
∴EF是⊙O的切线.
(2)∵AB是直径
∴∠ADB=90 °
∴∠ADC=90 °
即∠1+∠2=90 °又∠C+∠2=90 °
∴∠1=∠C
∴∠1 =∠3
∴![]()
∴![]()
∴AD=8
在Rt△ADB中,AB=10∴BD=6
在又Rt△AED中, ![]()
∴![]()
设BF=x
∵OD ∥AE
∴△ODF∽△AEF
∴
,即
,
解得:x=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.
治理杨絮一一您选哪一项?(单选)
A.减少杨树新增面积,控制杨树每年的栽种量
B.调整树种结构,逐渐更换现有杨树
C.选育无絮杨品种,并推广种植
D.对雌性杨树注射生物干扰素,避免产生飞絮
E.其他

根据以上统计图,解答下列问题:
(1)本次接受调查的市民共有 人;
(2)扇形统计图中,扇形E的圆心角度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在
中,
,
,直线
经过点
,且
于点
,
于点
.易得
(不需要证明).(1)当直线
绕点
旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时
之间的数量关系,并说明理由;(2)当直线
绕点
旋转到图3的位置时,其余条件不变,请直接写出此时
之间的数量关系(不需要证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB=6,AD=2
,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM的长度为( )
A.
B. 2 C.
D. 1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是


A. 55° B. 60° C. 65° D. 70°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCO放在平面直角坐标系中,其中顶点B的坐标为(5,3),E是BC边上一点,将△ABE沿AE翻折,点B刚好与OC边上的点D重合,过点E的反比例函数y=
的图象与边AB交于点F,则线段AF的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,有一条长为10的线段AB,其端点A、点B分别在y轴、x轴上滑动,点C为以AB为直径的⊙D上一点(C始终在第一象限),且tan∠BAC=
.则当点A从A0(0,10)滑动到O(0,0),B从O(0,0)滑动到B0(10,0)的过程中,点C运动的路径长为_____.
相关试题