【题目】如图,Rt△ABC中,∠ACB=90°,CA=CB=2,CD⊥AB于D,点P是线段CD上的一个动点,以点P为直角顶点向下作等腰直角△PBE,
连接DE ,则DE的最小值为__________.
![]()
参考答案:
【答案】1
【解析】连接AE,先证明∠BAE的度数为定值,即∠BAE=∠BCP=45°,再根据垂线段最短,当DE⊥AE时,DE最小,此时三角形ADE是等腰直角三角形,解直角三角形可得.
![]()
∵△ABC和△EBP均为等腰直角三角形
∴△ABC∽△EBP,且∠ABC=∠EBP=45°
∴
,且∠CBP=∠ABE
∴△CBP∽△ABE
∴∠BCP=∠BAE
∵CA=CB,∠ACB=90°,CD⊥AB
∴∠BCP=45°
∴∠BAE=∠BCP=45°
即∠BAE的度数为定值,
当DE⊥AE时,DE最小,此时三角形ADE是等腰直角三角形,
因为,三角形ABC是等腰直角三角形,CA=CB=2,CD⊥AB
所以,AD=
所以,设AE=DE=x,则由AE2+DE2=AD2得,2x2=2,
解得x=1
所以,DE=1.
故答案为:1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E、F分别是矩形ABCD的边BC、CD的中点,连接AC、AF、EF,若AF⊥EF,AC=
,则AB的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知数轴上两点A,B对应的数分别是﹣1,3,点P为数轴上的一动点,其对应的数为x

(1)A、B两点的距离AB= ;
(2)在数轴上是否存在点P,使PA+PB=6?若存在,请求出x的值;若不存在,请说明理由.
(3)如图2,若点P以每秒1个单位的速度从点O出发向右运动,同时点A以每秒5个单位的速度向左运动,点B以每秒20个单位的速度向右运动,在运动的过程中,M、N分别是AP、OB的中点,问:
的值是否发生变化?请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知一次函数的图象y=kx+b与反比例函数y=﹣
的图象交于A,B两点,且点A的横坐标和点B的纵坐标都是﹣2,求: 
(1)一次函数的解析式;
(2)△AOB的面积;
(3)直接写出一次函数的函数值大于反比例函数的函数值时x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.

(1)∠ACB=°,理由是:;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)画出△ABC绕点O逆时针旋转90°后得到的△DEF;
(2)以点O为位似中心,在第三象限内把△ABC按相似比2:1放大(即所画△PQR与△ABC的相似比为2:1).
(3)在(2)的条件下,若M(a,b)为△ABC边上的任意一点,则△PQR的边上与点M对应的点M′的坐标为 .

相关试题