【题目】5月16日,我校进行了全校师生防灾减灾大演练,警报拉响后同学们匀速跑步到操场,在操场指定位置清点人数、听广播后,再沿原路匀速步行回教室,同学们离开教学楼的距离y与时间x的关系的大致图象是( )
A.
B.
C.
D. ![]()
参考答案:
【答案】C
【解析】分析:根据在每段中,离教学楼的距离随时间的变化情况即可进行判断.
详解:图象应分三个阶段,第一阶段:匀速跑步到操场,在这个阶段,离教学楼的距离随时间的增大而增大;
第二阶段:在操场停留了一段时间,这一阶段离教学楼的距离不随时间的变化而改变,故D错误;
第三阶段:沿原路匀速步行回教学楼,这一阶段,离教学楼的距离随时间的增大而减小,故A错误;
并且这段的速度小于于第一阶段的速度,故B错误.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn﹣1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,E,F分别为平行四边形ABCD中AD,BC的中点,G,H在BD上,且 BG=DH,求证四边形EGFH是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24 ㎝,BC=26㎝,动点P从点A开始沿AD边以每秒1㎝的速度向D点运动,动点Q从点C开始沿CB边以每秒3㎝的速度向B运动,P,Q分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.

(1)t为何值时,四边形PQCD为平行四边形?
(2)t为何值时,四边形PQCD为等腰梯形?
(3)t为何值时,四边形ABQP为矩形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为12+22+32+…+n2 . 但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n﹣l)×n
=
n(n+1)(n﹣1)时,我们可以这样做:
(1)观察并猜想:
12+22=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
12+22+32=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
12+22+32+42=(1+0)×1+(1+1)×2+(l+2)×3+
=1+0×1+2+1×2+3+2×3+
=(1+2+3+4)+()
…
(2)归纳结论:
12+22+32+…+n2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n﹣l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n﹣1)×n
=()+[]
=+
=
×
(3)实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,∠ACB=90°点E是AB的中点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE,求证四边形ACEF是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】用简便方法计算:
(1)20192﹣2018×2020
(2)820×0.12521.
相关试题