【题目】如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC于点E.
![]()
(1)求证:CB=CE;
(2)若∠CEB=80°,求∠DBC的大小.
参考答案:
【答案】(1)证明见详解,(2)∠DBC =70°.
【解析】
(1)由BD⊥AC结合∠ABC=90°可证明∠A+∠C=90°,∠DBC+∠C=90°,由BE平分∠ABD得∠ABE=∠DBE,由∠CBE=∠CBD+∠DBE,∠CEB=∠A+∠ABE证得∠CBE=∠CEB即可.
(2)利用等腰三角形的性质求出∠C即可解决问题.
(1)证明:∵BD⊥AC,
∴∠CDB=90°,
∵∠ABC=90°,
∴∠A+∠C=90°,∠DBC+∠C=90°,
∵BE平分∠ABD,
∴∠ABE=∠DBE,
∵∠CBE=∠CBD+∠DBE,∠CEB=∠A+∠ABE,
∴∠CBE=∠CEB,
∴CB=CE.
(2)∵∠CEB=∠CBE=80°,
∴∠C=180°-2×80°=20°,
∵∠CDB=90°,
∴∠DBC=90°-20°=70°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于点D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,AM的延长线交BC于点N,连接DM,下列结论:①AE=AF;②DF=DN;③AN=BF;④EN⊥NC;⑤AE=NC,其中正确结论的个数是( )

A. 2个B. 3个C. 4个D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将△ABC纸片沿DE折叠,使点A落在点A′处,且A′B平分∠ABC,A′C平分∠ACB,若∠BA′C=110°,则∠1+∠2=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,△ABC在平面直角坐标系xOy中的位置如图所示,其中A(﹣2,3),B(﹣1,1),C(0,2).

(1)先作△ABC关于x轴对称的△A1B1C1,将△A1B1C1向右平移3个单位,再作平移后的△A2B2C2;
(2)写出A2、B2、C2三点坐标;
(3)在x轴上求作一点P,使PA1+PC2的值最小,并直接写出点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个四位数,记千位数字与百位数字之和为x,十位数字与个位数字之和为y,如果x=y,那么称这个四位数为“平衡数”.
(1)最小的“平衡数”为 ;四位数A与4738之和为最大的“平衡数”,则A的值为_______;
(2)一个四位“平衡数”M,它的个位数字是千位数字a的3倍,百位数字b与十位数字之和为8,求出所有满足条件的“平衡数”M的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为半圆O的直径,以AO为直径作半圆M,C为OB的中点,D在半圆M上,且CD⊥MD,延长AD交半圆O于点E,且AB=4,则圆中阴影部分的面积为_____________.

相关试题