【题目】阅读理解:
若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是(A,B)的妙点.
例如,如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的妙点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的妙点,但点D是(B,A)的妙点.
![]()
知识运用:如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.
(1)数 所表示的点是(M,N)的妙点;
(2)如图3,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发向左运动,到达点A停止.P点运动多少个单位时,P、A和B中恰有一个点为其余两点的妙点?
参考答案:
【答案】(1)2或10;(2)见解析.
【解析】
(1) 设所求数为x, 根据优点的定义分妙点在M、N之间和妙点在点N右边,列出方程解方程即可;
(2)根据妙点的定义可知分两种情况:①P为(A, B) 的妙点; ②P为 (B,A) 的妙点;③B为 (A, P) 的妙点. A为(B,P)的妙点设点P表示的数为y,根据妙点的定义列出方程, 进而得出的值.
解:(1)设所求数为x,由题意得
x﹣(﹣2)=2(4﹣x),
解得x=2;
或x+2=2(x﹣4),
解得x=10.
故数2或10所表示的点是【M,N】的妙点;
故答案为:2或10.
(2)设点P表示的数为y,分四种情况:
①P是【A,B】的妙点.
由题意,得y﹣(﹣40)=2(20﹣y),
解得y=0,
20﹣0=20;
②P是【B,A】的妙点.
由题意,得20﹣y=2[y﹣(﹣40)],
解得y=﹣20,
20﹣(﹣20)=40;
③B是【A,P】的妙点.
由题意,得20﹣(﹣40)=2(20﹣y),
解得y=﹣10,
20﹣(﹣10)=30;
④A为【B,P】的妙点,
由题意得20﹣(﹣40)=2[y﹣(﹣40)]
y=﹣10,
20﹣(﹣10)=30.
综上可知,当P点运动20或40或30个单位时,P、A和B中恰有一个点为其余两点的妙点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.
(1)求A,B两种商品每件各是多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低? -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,P为边AB上一点.

(1)如图1,若∠ACP=∠B,求证:AC2=APAB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:已知Q、K、R为数轴上三点,若点K到点Q的距离是点K到点R的距离的2倍,我们就称点K是有序点对[Q,R]的好点.
根据下列题意解答问题:

(1)如图1,数轴上点Q表示的数为1,点P表示的数为0,点K表示的数为1,点R
表示的数为2.因为点K到点Q的距离是2,点K到点R的距离是1,所以点K是
有序点对
的好点,但点K不是有序点对
的好点.同理可以判断:点P__________有序点对
的好点,点R______________有序点对
的好点(填“是”或“不是”);(2)如图2,数轴上点M表示的数为-1,点N表示的数为5,若点X是有序点对
的好点,求点X所表示的数,并说明理由?(3)如图3,数轴上点A表示的数为20,点B表示的数为10.现有一只电子蚂蚁C从
点B出发,以每秒2个单位的速度向左运动t秒.当点A、B、C中恰有一个点为其余两有序点对的好点,求t的所有可能的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=
x2﹣
(b+1)x+
(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为 , 点C的坐标为(用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.

问:(1)动点P从点A运动至C点需要多少时间?
(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;
(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,O是对角线的交点,AF平分
BAC,DH
AF于点H,交AC于G,DH延长线交AB于点E,求证:BE=2OG.
相关试题