【题目】如图,∵DE∥BC(已知),∴∠1=____(____),∠2=_______(_____)又∵∠1=∠2(已知),∴∠B=∠C(____),∵∠3=∠B(已知),∴∠3=∠C(_________),∴DF∥AC(______)
![]()
参考答案:
【答案】∠B 两直线平行,同位角相等 ∠C 两直线平行,同位角相等 等量代换 等量代换 同位角相等,两直线平行
【解析】
根据两直线平行,同位角相等可得∠1=∠B,∠2=∠C,由∠3=∠C可根据同位角相等,两直线平行得到DF∥AC.
∵DE∥BC(已知),
∴∠1=∠B,(两直线平行,同位角相等).
∠2=∠C(两直线平行,同位角相等).
又∵∠1=∠2(已知),
∴∠B=∠C.(等量代换)
∵∠3=∠B(已知),
∴∠3=∠C,(等量代换)
∴DF∥AC (同位角相等,两直线平行).
故答案为:(1). ∠B (2). 两直线平行,同位角相等 (3). ∠C (4). 两直线平行,同位角相等 (5). 等量代换 (6). 等量代换 (7). 同位角相等,两直线平行
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6
,则FG的长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD2=CACB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=
,求BE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】为积极响应市委政府“加快建设天蓝水碧地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:

请根据所给信息解答以下问题:
(1)这次参与调查的居民人数为:;
(2)请将条形统计图补充完整;
(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;
(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:
≈1.73,
≈1.41.
相关试题