【题目】大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度.
![]()
参考答案:
【答案】15米.
【解析】
试题分析:过点B作BE⊥AD交AD延长线于点E,构造两个直角三角形.设DE=x,分别求解可得AD与DE的值,再利用BC=AD+DE,即可求出答案.
试题解析:过点B作BE⊥AD,交AD延长线于点E.
![]()
在Rt△BED中,∵D点测得塔顶B点的仰角为30°,
∴∠BDE=60度.
设DE=x,则BE=
x.
在Rt△BEA中,∠BAE=30度,BE=
x.
∴AE=3x.
∴AD=AE-DE=3x-x=2x=10.
∴x=5.
∴BC=AD+DE=10+5=15(米).
答:塔BC的高度为15米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2x2+3x+1=0.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(-4,
),B(-1,2)是一次函数y=kx+b的图像与反比例函数
(m≠0,m<0)的函数图像的两个交点,AC⊥x轴于点C,BD⊥y轴于点D
(1)根据函数图像直接回答问题:在第二象限内,当x取何值时,一次函数的值大于反比例函数的值?
(2)求一次函数的表达式及m的值;
(3)点P是线段AB上一点,连接PC,PD,若△PCA和△PBD的面积相等,求点P的坐标。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.

解:∵EF∥AD(已知)
∴∠2=∠3 )---①
又∵∠1=∠2(已知)
∴∠1=∠3( )----②
∴AB∥______( )----③
∴∠BAC+∠AGD=180°( )----④
∵∠BAC=70°(已知)
∴∠AGD=1800-700=1100
-
科目: 来源: 题型:
查看答案和解析>>【题目】某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂A、B两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请设计出来.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在¨ABCD中,过点D作DE⊥AB与点E,点F在边CD上,DF=BE,连接AF,BF

(1)求证:四边形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200立方米的生活垃圾运走:
(1)假如每天能运x立方米,所需时间为y天,写出y与x之间的函数表达式;
(2)若每辆拖拉机一天能运12立方米,则5辆这样的拖拉机要用多少天才能运完?
(3)在(2)的情况下,运了8天后,剩下的任务要在不超过6天的时间内完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?
相关试题