【题目】如图,直线AB、CD交于点O,OE平分∠AOD,OF平分∠BOD.
(1)∠AOC=50°,求∠DOF与∠DOE的度数,并计算∠EOF的度数;
(2)当∠AOC的度数变化时,∠EOF的度数是否变化?若不变,求其值;若变化,说明理由.
![]()
参考答案:
【答案】(1)∠EOF=90°;(2) ∠AOC的度数变化时,∠EOF的度数不变化,理由见解析.
【解析】
(1)根据对顶角、邻补角,可得∠BOD、∠AOD,根据角平分线的性质,可得∠DOF与∠DOE的度数,根据角的和差,可得答案;
(2)根据角平分线的性质,可得∠DOF与∠DOE的度数,根据角的和差,可得答案.
(1)由对顶角相等,得∠BOD=∠AOC=50°,
由OF平分∠BOD,得∠DOF=
∠BOD=
×50°=25°,
由邻补角互补,得∠AOD=180°-∠AOC=180°-50°=130°,
由OE平分∠AOD,得∠DOE=
∠AOD=
×130°=65°,
由角的和差,得∠EOF=∠DOF+∠DOE=25°+65°=90°;
(2)∠AOC的度数变化时,∠EOF的度数不变化,
由OF平分∠BOD,得∠DOF=
∠BOD,
由OE平分∠AOD,得∠DOE=
∠AOD,
由角的和差,得∠EOF=∠DOF+∠DOE=
∠BOD+
∠AOD=
(∠AOD+∠BOD)=
∠AOB=90°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
,AB=10米,AE=15米.(i=1:
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
1.414,
1.732) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD,若按图中规律继续下去,则∠1+∠2+…+∠n等于( )

A. n·180° B. 2n·180° C. (n-1)·180° D. (n-1)2·180°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CF,DE∥CF,DE与BC交于点P,若∠ABC=70°,∠CDE=130°.
(1)试判断∠ABP与∠BPD之间的数量关系,并说明理由;
(2)求∠BCD的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

信息读取
(1)梯形上底的长AB=;
(2)直角梯形ABCD的面积=;
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列图中∠1与∠2,∠3与∠4分别是哪两条直线被哪一条直线所截而成的?是什么角?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t等于多少秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当3秒<t<5秒时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,用含x,y的式子表示z.

相关试题