【题目】某校组织部分师生从学校(A地)到300千米外的B地进行红色之旅(革命传统教育),租用了客运公司甲、乙两辆车,其中乙车速度是甲车速度的
,两车同时从学校出发,以各自的速度匀速行驶,行驶2小时后甲车到达服务区C地,此时两车相距40千米,甲车在服务区休息15分钟户按原速度开往B地,乙车行驶过程中未做停留.
(1)求甲、乙两车的速度?
(2)问甲车在C地结束休息后再行驶多长时间,甲、乙两车相距30千米?
参考答案:
【答案】(1)甲、乙两车的速度分别为100km/h、80km/h.(2)甲车在C地结束休息后再行驶0.5小时后,甲、乙两车相距30千米.
【解析】
(1)根据两车同时出发,行驶2小时两车相距40千米,说明甲车速度比乙车每小时快20km/h,于是设甲车每小时行驶xkm/h,那么乙车每小时行驶
x,列方程x﹣
x=20即可;
(2)设t小时后相距30km,考虑甲车休息15分钟时,乙车未做停留,即可列方程求解.
解:(1)设甲车每小时行驶xkm/h,那么乙车每小时行驶
xkm/h,
∵两车同时出发,行驶2小时两车相距40千米,
∴x﹣
x=20,
得x=100,于是
x=80,
答:甲、乙两车的速度分别为100km/h、80km/h.
(2)设甲车在C地结束休息后再行驶t小时后,甲、乙两车相距30千米.
则有100(2+t)﹣80(2+
+t)=30
解得t=0.5
答:甲车在C地结束休息后再行驶0.5小时后,甲、乙两车相距30千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.

(1)求证:四边形BFDE为平行四边形;
(2)若四边形BFDE为菱形,且AB=2,求BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于⊙C与⊙C上的一点A,若平面内的点P满足:射线AP与⊙C交于点Q(点Q可以与点P重合),且
,则点P称为点A关于⊙C的“生长点”.已知点O为坐标原点,⊙O的半径为1,点A(-1,0).
(1)若点P是点A关于⊙O的“生长点”,且点P在x轴上,请写出一个符合条件的点P的坐标________;
(2)若点B是点A关于⊙O的“生长点”,且满足
,求点B的纵坐标t的取值范围;(3)直线
与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的“生长点”,直接写出b的取值范围是_____________________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠A
90°,AB
AC.(1)如图1,△ABC的角平分线BD,CE交于点Q,请判断“
”是否正确:________(填“是”或“否”);(2)点P是△ABC所在平面内的一点,连接PA,PB,且PB
PA.①如图2,点P在△ABC内,∠ABP
30°,求∠PAB的大小;②如图3,点P在△ABC外,连接PC,设∠APC
α,∠BPC
β,用等式表示α,β之间的数量关系,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.

(1)试判断四边形OCED的形状,并说明理由;
(2)若AB=6,BC=8,求四边形OCED的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).
(1)若∠BEC的补角是它的余角的3倍,则∠BEC= °;
(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;
(3)若射线EF平分∠AED,∠FEG=m°(m>90°)(如图2),则∠AEG﹣∠CEG= °(用m的代表式表示).

-
科目: 来源: 题型:
查看答案和解析>>【题目】有两个大小完全一样的长方形OABC和EFGH重合放在一起,边OA、EF在数轴上,O为数轴原点(如图1),长方形OABC的边长OA的长为6个坐标单位.
(1)数轴上点A表示的数为 .
(2)将长方形EFGH沿数轴所在直线水平移动
①若移动后的长方形EFGH与长方形OABC重叠部分的面积恰好等于长方形OABC面积的
,则移动后点F在数轴上表示的数为 .②若出行EFGH向左水平移动后,D为线段AF的中点,求当长方形EFGH移动距离x为何值时,D、E两点在数轴上表示的数是互为相反数?

相关试题