【题目】综合题
(1)用公式法解方程x2﹣3x﹣7=0.
(2)解方程:4x(2x﹣1)=3(2x﹣1)
参考答案:
【答案】
(1)解:∵a=1,b=﹣3,c=﹣7.
∴△=9+28=3,
∴x=
,
即x1=
,x2= ![]()
(2)解:原方程化简为:(2x﹣1)(4x﹣3)=0,
∴2x﹣1=0或4x﹣3=0,
解得:x1=
,x2= ![]()
【解析】(1)公式法求解可得;(2)因式分解法求解可得.
【考点精析】本题主要考查了公式法和因式分解法的相关知识点,需要掌握要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B两种型号的机器加工同一种零件,已知A型机器比B型机器每小时多加工20个零件,A型机器加工400个零件所用时间与B型机器加工300个零件所用时间相同.A型机器每小时加工零件的个数_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:
,其中x的值从不等式组
的整数解中选取. -
科目: 来源: 题型:
查看答案和解析>>【题目】某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市计划对某地块的1000m2区域进行绿化,由甲、乙两个工程队合作完成.已知甲队每天能完成绿化的面积是乙队的2倍;若两队分别各完成300m2的绿化时,甲队比乙队少用3天.
(1)求甲、乙两工程队每天能完成的绿化的面积;
(2)两队合作完成此工程,若甲队参与施工x天,试用含x的代数式表示乙队施工的天数y;
(3)若甲队每天施工费用是0.6万元,乙队每天为0.2万元,且要求两队施工的天数之和不超过16天,应如何安排甲、乙两队施工的天数,才能使施工总费用最低?并求出最低费用时的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.

(1)试判断AB、AC之间的大小关系,并给出证明;
(2)在上述题设条件下,当△ABC为正三角形时,点E是否AC的中点?为什么? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,AB是⊙O的直径,点C是
的中点,∠COB=60°,过点C作CE⊥AD,交AD的延长线于点E 
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.
相关试题