【题目】将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1 , B1C1交CD于点E,AB=
,则四边形AB1ED的内切圆半径为( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】B
【解析】解:作∠DAF与∠AB1G的角平分线交于点O,过O作OF⊥AB1 ,
则∠OAF=30°,∠AB1O=45°,
故B1F=OF=
OA,
设B1F=x,则AF=
﹣x,
故(
﹣x)2+x2=(2x)2 ,
解得x=
或x=
(舍去),
∴四边形AB1ED的内切圆半径为:
.
故选:B.![]()
【考点精析】解答此题的关键在于理解正方形的性质的相关知识,掌握正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形,以及对三角形的内切圆与内心的理解,了解三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心.
-
科目: 来源: 题型:
查看答案和解析>>【题目】标准的篮球场长28m,宽15m.在某场篮球比赛中,红队甲、乙两名运动员分别在A,B处,位置如图①所示,已知点B到中线EF的距离为6m,点C到中线EF的距离为8m,运动员甲在A处抢到篮球后,迅速将球抛向C处,球的平均运行速度是
m/s,运动员乙在B处看到后同时快跑到C处并恰好接住了球(点A,B,C在同一直线上).图②中l1,l2分别表示球、运动员乙离A处的距离y(m)与从A处抛球后的时间x(s)的关系图象.(1)直接写出a,b,c的值;
(2)求运动员乙由B处跑向C处的过程中y(m)与x(s)的函数解析式l2;
(3)运动员要接住球,一般在球距离自己还有2m远时要做接球准备,求运动员乙准备接此球的时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,B两地相距450千米,两地之间有一个加油站O,且AO=270千米,一辆轿车从A地出发,以每小时90千米的速度开往B地,一辆客车从B地出发,以每小时60千米的速度开往A地,两车同时出发,设出发时间为t小时.
(1)经过几小时两车相遇?
(2)当出发2小时时,轿车和客车分别距离加油站O多远?
(3)经过几小时,两车相距50千米?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某景区内的环形路是边长为1200米的正方形ABCD,现有1号、2号两辆游览车分别从出口A和景点C同时出发,1号车沿A→B→C→D→A路线、2号车沿C→B→A→D→C路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.
(1)如图1,设行驶时间为t分(0≤t≤8)
①1号车、2号车离出口A的路程分别为_____米,_____米;(用含t的代数式表示)
②当两车相距的路程是600米时,求t的值;
(2)如图2,游客甲在BC上的一点K(不与点B、C重合)处候车,准备乘车到出口A,设CK=x米.
情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;
情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.
请判断游客甲在哪种情况下乘车到出口A用时较多?(含候车时间)

-
科目: 来源: 题型:
查看答案和解析>>【题目】设二次函数y1=a(x﹣x1)(x﹣x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1 , 0),若函数y=y1+y2的图象与x轴仅有一个交点,则( )
A.a(x1﹣x2)=d
B.a(x2﹣x1)=d
C.a(x1﹣x2)2=d
D.a(x1+x2)2=d -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,BM是∠ABC的平分线,交CD于点M,且DM=2,平行四边形ABCD的周长是14,则BC的长等于( )

A. 2B. 2.5C. 3D. 3.5
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,点A,O,B分别表示﹣15,0,9,点P,Q分别从点A,B同时开始沿数轴正方向运动,点P的速度是每秒3个单位,点Q的速度是每秒1个单位,运动时间为t秒.在运动过程中,若点P,Q,O三点其中一个点恰好是另外两点为端点的线段的一个三等分点,则运动时间为_____秒.
相关试题