【题目】在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是() ![]()
A.若AD⊥BC,则四边形AEDF是矩形
B.若AD垂直平分BC,则四边形AEDF是矩形
C.若BD=CD,则四边形AEDF是菱形
D.若AD平分∠BAC,则四边形AEDF是菱形
参考答案:
【答案】D
【解析】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误; 若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;
若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;
若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.
【考点精析】通过灵活运用菱形的判定方法和矩形的判定方法,掌握任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图,已知点C在线段AB上,且AC=5cm,BC=3cm,点M,N分别是AC,BC的中点,求线段MN的长度.
(2)若点C是线段AB上任意一点,且AC=a,BC=b, 点M、N分别是,AC,BC的中点,请直接写出线段MN的长度(用含a,b的代数式表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是( )

A.2
B.
﹣
π
C.1
D.
+
π -
科目: 来源: 题型:
查看答案和解析>>【题目】小强是校学生会体育部部长,他想了解现在同学们更喜欢什么球类运动,以便学生会组织受欢迎的比赛.于是他设计了调查问卷,在全校每个班都随机选取了一定数量的学生进行调查,调查问卷如下:
调查问卷
你最喜欢的球类运动是( )(单选)
A、篮球B、足球C、排球D、乒乓球E、羽毛球F、其他
调查问卷
你最喜欢的球类运动是( )(单选)
A、篮球B、足球C、排球D、乒乓球E、羽毛球F、其他
小强根据统计数据制作的各活动小组人数分布情况的统计表和扇形统计图如下


(1)请你写出统计表中空缺部分的人数m= , n= .
(2)在扇形统计图中,羽毛球所对应的扇形圆心角等于 .
(3)请你根据调查结果,给小强部长简要提出两条合理化的建议.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“数形结合"是一种重要的数学思想,观察下面的图形和算式.
解答下列问题:
(1)试猜想1+3+5+7+9+…+19=______=( );
(2)试猜想,当n是正整数时,1+3+5+7+9+…+(2n-1)= ;
(3)请用(2)中得到的规律计算:19+21+23+25+27+…+99.

-
科目: 来源: 题型:
查看答案和解析>>【题目】足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:
t
0
1
2
3
4
5
6
7
…
h
0
8
14
18
20
20
18
14
…
下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=
;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,点 D 为 AB的中点.
(1)如果点 P 在线段 BC 上以 1cm/s 的速度由点 B 向点 C 运动,同时,点 Q 在线段 CA 上由点 C 向点 A 运动.
①若点 Q 的运动速度与点 P 的运动速度相等,经过 1 秒后,△BPD 与△CQP 是否全等,请说明理由;
②若点 Q 的运动速度与点 P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?
(2)若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,则经过 后,点 P 与点 Q 第一次在△ABC 的 边上相遇?(在横线上直接写出答案,不必书写解题过程)

相关试题