【题目】为了迎接期末考试,某中学对全校七年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如图两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中,被抽取的学生的总人数为多少?
(2)请将表示成绩类别为“中”的条形统计图补充完整.
(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是多少?
(4)学校七年级共有1000人参加了这次数学考试,估计该校七年级共有多少名学生的数学成绩可以达到优秀.
参考答案:
【答案】(1)被抽取的学生的总人数为50人;(2)补图见解析;(3)72°;(4)估计该校七年级共有200名学生的数学成绩可以达到优秀.
【解析】
(1)利用成绩为良的人数以及百分比求出总人数即可.
(2)求出成绩为中的人数,画出条形图即可.
(3)根据圆心角=360°×百分比即可.
(4)用样本估计总体的思想解决问题即可.
(1)8÷16%=50(人).
答:被抽取的学生的总人数为50 人.
(2)50×20%=10(人),如图.
![]()
(3)因为成绩类别为“优”的扇形所占的百分比为10÷50=20%,
所以表示成绩类别为“优”的扇形所对应的圆心角的度数是360°×20%=72°
(4)1000×20%=200(名).
答:估计该校七年级共有200名学生的数学成绩可以达到优秀.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某人为了解他所在地区的旅游情况,收集了该地区2014年到2017年每年旅游收入的有关数据,整理并绘制成折线统计图,根据图中信息,回答下列问题:
(1)该地区2014年到2017年四年的年旅游平均收入是多少亿元;
(2)从折线统计图中你能获得哪些信息?

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:有一组邻边相等的凸四边形叫做“准菱形”.利用该定义完成以下各题:
(1) 理解
填空:如图1,在四边形ABCD中,若 (填一种情况),则四边形ABCD是“准菱形”;
(2)应用
证明:对角线相等且互相平分的“准菱形”是正方形;(请画出图形,写出已知,求证并证明)
(3) 拓展
如图2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将Rt△ABC沿∠ABC的平分线BP方向平移得到△DEF,连接AD,BF,若平移后的四边形ABFD是“准菱形”,求线段BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形各个内角的平分线围成一个四边形,则这个四边形一定是( )
A. 正方形 B. 菱形 C. 矩形 D. 平行四边形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1 ,一次函数
(k,b为常数,k≠0)的图象与反比例函数
(m为常数,m≠0)的图象相交于点M(1,4)和点N(4,n).(1)填空:①反比例函数的解析式是 ; ②根据图象写出
时自变量x的取值范围是 ;(2) 若将直线MN向下平移a(a>0)个单位长度后与反比例函数的图象有且只有一个公共点,求a的值;
(3) 如图2,函数
的图象(x>0)上有一个动点C,若先将直线MN平移使它过点C,再绕点C旋转得到直线PQ,PQ交
轴于点A,交
轴点B,若BC=2CA, 求OA·OB的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,AB
,BC
,连结对角线AC,点O为AC的中点,点E为线段BC上的一个动点,连结OE,将△AOE沿OE翻折得到△FOE,EF与AC交于点G,若△EOG的面积等于△ACE的面积的
,则BE=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮,经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.若每平方米草皮需要200元,则种植这片草皮需要多少元?

相关试题