【题目】如图,正方形
的边长是
,
的平分线交
于点
,若点
分别是
和
上的动点,则
的最小值是_______.
![]()
参考答案:
【答案】![]()
【解析】
过D作AE的垂线交AE于F,交AC于D′,再过D′作D′P′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.
解:解:作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,
![]()
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵AF=AF,∠DAE=∠CAE,
∴△DAF≌△D′AF,
∴D′是D关于AE的对称点,AD′=AD=5,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′,
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=25,
∵AP′=P′D',
2P′D′2=AD′2,即2P′D′2=25,
,即DQ+PQ的最小值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,点O是直线AB上一点,过点O作射线OC.
(1)若∠AOC=140°,则∠BOC=________°.
(2)在图1中分别画∠AOC的角平分线OE和∠BOC的角平分线OF,那么,OE和OF有什么位置关系,请说明理由.
(3)若∠BOC=30°,射线OD从OB出发,绕点O以每秒10°角的速度逆时针旋转.当射线OD与射线OA重合时,射线OC以每秒30°角的速度绕点O逆时针旋转,射线OD按原来的速度和方向继续旋转,当射线OC或射线OD中有一条射线与射线OB重合时,两条射线都停止.设射线OD旋转的时间为t秒,在旋转的过程中,是否存在某个时刻,使得射线OB、OC与OD中的某一条射线是另两条射线所夹角的平分线?若存在,直接写出所有满足条件的t的值,若不存在,说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为进一步推进青少年毒品预防教育“627“工程,切实提高广大青少年识毒、防毒、拒毒的意识和能力,我市高度重视全国青少年禁毒知识竞赛活动.针对某校七年级学生的知识竞赛成绩绘制了如图不完整的统计图表.

知识竞赛成绩频数分布表
组别
成绩(分数)
人数
A
95≤x<100
300
B
90≤x<95
a
C
85≤x<90
150
D
80≤x<85
200
E
75≤x<80
b
根据所给信息,解答下列问题.
(1)a=____,b=____.
(2)请求出C组所在扇形统计图中的圆心角的度数.
(3)补全知识竞赛成绩频数分布直方图.
(4)已知我市七年级有180000名学生,请估算全市七年级知识竞赛成绩低于80分的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A、B两点,点A在点B的左侧.
(1)如图1,当k=1时,直接写出A,B两点的坐标;
(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;
(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),是否存在实数k使得直线y=kx+1与以O、C为直径的圆相切?若存在,请求出k的值;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】闵行区政府为残疾人办实事,在道路改造工程中为盲人修建一条长3000米的盲道,根据规划设计和要求,某工程队在实际施工中增加了施工人员,每天修建的盲道比原计划多250米,结果提前2天完成工程,问实际每天修建盲道多少米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】母亲节到了,小明准备为妈妈煮四个大汤圆作早点:一个芝麻馅,一个牛肉馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.
(1)分别用A,B,C表示芝麻馅、牛肉馅、花生馅的大汤圆,求妈妈吃前两个汤圆刚好都是花生馅的概率(请用“画树状图”或“列表”等方法,写出分析过程,并给出结果);
(2)若花生馅的大汤圆的个数为n个(n≥2),则妈妈吃前两个汤圆都是花生馅的概率是 (请用含n的式子直接写出结果)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校开展“阳光体育”活动,决定开设乒乓球、篮球、跑步、跳绳这四种运动项目,学生只能选择其中一种,为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成两张不完整的统计图,请你结合图中的信息解答下列问题:
(1)样本中喜欢篮球项目的人数百分比是 ;其所在扇形统计图中的圆心角的度数是 ;
(2)把条形统计图补画完整并注明人数;
(3)已知该校有1000名学生,根据样本估计全校喜欢乒乓球的人数是多少?

相关试题