【题目】已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形. ![]()
参考答案:
【答案】证明:∵AD⊥BD, ∴△ABD是Rt△
∵E是AB的中点,
∴BE=
AB,DE=
AB (直角三角形斜边上的中线等于斜边的一半),
∴BE=DE,
∴∠EDB=∠EBD,
∵CB=CD,
∴∠CDB=∠CBD,
∵AB∥CD,
∴∠EBD=∠CDB,
∴∠EDB=∠EBD=∠CDB=∠CBD,
∵BD=BD,
∴△EBD≌△CBD (ASA ),
∴BE=BC,
∴CB=CD=BE=DE,
∴菱形BCDE.(四边相等的四边形是菱形)
【解析】由题意易得DE=BE,再证四边形BCDE是平行四边形,即证四边形BCDE是菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC= , CD= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为了解本校学生对球类运动的爱好情况,采用抽样的方法,从足球、篮球、排球、其它等四个方面调查了若干名学生,并绘制成“折线统计图”与“扇形统计图”.请你根据图中提供的部分信息解答下列问题:


(1)在这次调查活动中,一共调查了名学生;
(2)“足球”所在扇形的圆心角是度;
(3)补全折线统计图. -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙、丙三个布袋都不透明,甲袋中装有1个红球和1个白球;乙袋中装有一个红球和2个白球;丙袋中装有2个白球.这些球除颜色外都相同.从这3个袋中各随机地取出1个球. (Ⅰ)取出的3个球恰好是2个红球和1个白球的概率是多少?
(Ⅱ)取出的3个球全是白球的概率是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABO中,已知点
、B(﹣1,﹣1)、O(0,0),正比例函数y=﹣x图象是直线l,直线AC∥x轴交直线l与点C. 
(1)C点的坐标为;
(2)以点O为旋转中心,将△ABO顺时针旋转角α(90°≤α<180°),使得点B落在直线l上的对应点为B′,点A的对应点为A′,得到△A′OB′. ①∠α=;②画出△A′OB′.
(3)写出所有满足△DOC∽△AOB的点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图1,图形①满足AD=AB,MD=MB,∠A=72°,∠M=144°.图形②与图形①恰好拼成一个菱形(如图2).记AB的长度为a,BM的长度为b.
(1)图形①中∠B=°,图形②中∠E=°;
(2)小明有两种纸片各若干张,其中一种纸片的形状及大小与图形①相同,这种纸片称为“风筝一号”;另一种纸片的形状及大小与图形②相同,这种纸片称为“飞镖一号”. ①小明仅用“风筝一号”纸片拼成一个边长为b的正十边形,
需要这种纸片张;
②小明若用若干张“风筝一号”纸片和“飞镖一号”纸片拼成一个“大风筝”(如图3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.请你在图3中画出拼接线并保留画图痕迹.(本题中均为无重叠、无缝隙拼接)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发现:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:
t
1
2
3
y2
21
44
69
(1)求a、b的值;
(2)若甲级干果与乙级干果分别以8元/千克和6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克? (说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)
相关试题