【题目】如图所示,O为直线AB上一点,OD平分∠AOC,∠DOE=90°.
(1)∠AOD的余角是 ______ ,∠COD的余角是 ______
(2)OE是∠BOC的平分线吗?请说明理由.
![]()
参考答案:
【答案】(1)∠AOD的余角是∠COE, ∠BOE;∠COD的余角是∠COE, ∠BOE.
(2)OE是∠BOC的平分线,证明见解析.
【解析】(1)∠AOD的余角是∠COE, ∠BOE;∠COD的余角是∠COE, ∠BOE.
(2)OE是∠BOC的平分线.理由:
∵∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COD+∠DOE=90°,∴∠AOD+∠BOE=∠COD+∠DOE.
∵OD平分∠AOC,∴∠AOD=∠COD,∴∠COE=∠BOE,∴OE平分∠BOC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列平面直角坐标系中画出函数y1=-x+3,y2=3x-4的图象.观察图象,回答下列问题:
(1)当x取何值时,y1=y2?
(2)当x取何值时,y1>y2?
(3)当x取何值时,y1<y2?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;
②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线. 其中正确的个数有( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知线段AB和CD的公共部分BD=
AB=
CD,线段AB、CD的中点E,F之间距离是10cm,求AB,CD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2016年11月13日巴基斯坦瓜达尔港正式开港,此港成为我国“一带一路”必展战略上的一颗璀璨的明星,某大型远洋运输集团有三种型号的远洋货轮,每种型号的货轮载重量和盈利情况如下表所示:
甲
乙
丙
平均货轮载重的吨数(万吨)
10
5
7.5
平均每吨货物可获例如(百元)
5
3.6
4
(1)若用乙、丙两种型号的货轮共8艘,将55万吨的货物运送到瓜达尔港,问乙、丙两种型号的货轮各多少艘?
(2)集团计划未来用三种型号的货轮共20艘装运180万吨的货物到国内,并且乙、丙两种型号的货轮数量之和不超过甲型货轮的数量,如果设丙型货轮有m艘,则甲型货轮有艘,乙型货轮有艘(用含有m的式子表示),那么如何安排装运,可使集团获得最大利润?最大利润的多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】今年冬天受寒潮影响,淘宝上的电热取暖器销售火爆.某电商销售每台成本价分别为200元、170元的A、B两种型号的电热取暖器,下表是近两天的销售情况:
销售时段
销售数量
A种型号
B种型号
销售收入
第一天
3台
5台
1800元
第二天
4台
10台
3100元
(1)求A、B两种型号的电热取暖器的销售单价;
(2)若该电商准备用不多于5400元的金额再采购这两种型号的电热取暖器共30台,问A种型号的电热取暖器最多能采购多少台?
-
科目: 来源: 题型:
查看答案和解析>>【题目】点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角形的直角三角板的直角顶点放在点O处.
(1)如图1,将三角板MON的一边ON与射线OB重合,则∠MOC=___________;
(2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;

(3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=
∠AOM,求∠NOB的度数.
相关试题