【题目】如图,已知反比例函数y=
与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).![]()
(1)试确定这两函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;
(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.
参考答案:
【答案】
(1)
解;∵反比例函数y=
与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),
∴
,
解得,k=2,
∴点A(1,2),
∴2=1+b,得b=1,
即这两个函数的表达式分别是:
,y=x+1;
(2)
解; ![]()
解得,
或
,
即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);
将y=0代入y=x+1,得x=﹣1,
∴OC=|﹣1|=1,
∴S△AOB=S△AOC+S△BOC=
,
即△AOB的面积是
;
(3)
解;根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.
【解析】(1)根据反比例函数y=
与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB的面积;(3)根据函数图象可以解答本题.
【考点精析】解答此题的关键在于理解一次函数的图象和性质的相关知识,掌握一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远,以及对反比例函数的图象的理解,了解反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(阅读)如图1,四边形OABC中,OA=a,OC=3,BC=2,∠AOC=∠BCO=90°,经过点O的直线l将四边形分成两部分,直线l与OC所成的角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ [θ,a ]
(理解)若点D与点A重合,则这个操作过程为FZ [45°,3];
(尝试)
(1)若点D恰为AB的中点(如图2),求θ;
(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形OABC的边AB上(如图3),求出a的值;若点E落在四边形OABC的外部,直接写出a的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.
(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;
(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).

(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为 . ;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是( )

A.1<r<4
B.2<r<4
C.1<r<8
D.2<r<8 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:
①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是( )

A. ①② B. ①③ C. ②③ D. ②④
相关试题