【题目】如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣
x+
与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).
(1)求抛物线m的解析式;
(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;
(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)y=
x2﹣
x+1;(2)点P坐标为(3,
);(3)点Q坐标为(9,4)或(15,16).
【解析】
试题分析:(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)作出B点关于l的对称点B′,连接EB′交l于点P,如图所示,,三角形BEP为顶点的三角形的周长最小,再求出直线B′E的解析式,进而得出P点坐标;(3)先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.
试题解析:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上
∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=![]()
∴A点坐标为(3,0),抛物线m的解析式为y=
x2﹣
x+1;
(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)
∴连接EB′交l于点P,如图所示
![]()
设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得
解得
,
则函数解析式为y=﹣
x+![]()
把x=3代入解得y=
,
∴点P坐标为(3,
);
(3)∵y=﹣
x+
与x轴交于点D,
∴点D坐标为(7,0),
∵y=﹣
x+
与抛物线m的对称轴l交于点F,
∴点F坐标为(3,2),
求得FD的直线解析式为y=﹣
x+
,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,
设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,
设点Q的坐标为(a,
),把点Q代入y=2x﹣14得
=2a﹣14
解得a1=9,a2=15.
∴点Q坐标为(9,4)或(15,16).
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=
BC,则△ABC的顶角的度数为_____. -
科目: 来源: 题型:
查看答案和解析>>【题目】日常生活中有许多现象应用了反比例函数,下列现象:①购买同一商品,买的越多,花钱越多;②百米赛跑时,用时越短,成绩越好;③把浴盆放满水,水流越大,用时越短;④从网上下载同一文件,网速越快,用时越少.其中符合反比例关系的现象有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,二次函数y=ax2+bx+c (a≠0)的图像与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC. 则下列结论:
①abc>0 ②9a+3b+c<0 ③c>-1 ④关于x的方程ax2+bx+c=0 (a≠0)有一个根为-

其中正确的结论个数有( )
A. 1个 B. 2个 C.3个 D. 4个

-
科目: 来源: 题型:
查看答案和解析>>【题目】若等腰三角形的两边长为2和5,则它的周长为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,设甲每天加工x个玩具:
(1)乙每天加工 个玩具(用含x的代数式表示);
(2)求甲乙两人每天各加工多少个玩具?
-
科目: 来源: 题型:
查看答案和解析>>【题目】反比例函数y=
(a>0,a为常数)和y=
在第一象限内的图象如图所示,点M在y=
的图象上,MC⊥x轴于点C,交y=
的图象于点A;MD⊥y轴于点D,交y=
的图象于点B,当点M在y=
的图象上运动时,以下结论:①S△ODB=S△OCA;
②四边形OAMB的面积不变;
③当点A是MC的中点时,则点B是MD的中点.
其中正确结论的个数是( )

A.0 B.1 C.2 D.3
相关试题