【题目】已知ABCD的周长为26,∠ABC=120°,BD为一条对角线,⊙O内切于△ABD,E,F,G为切点,已知⊙O的半径为
.求ABCD的面积.
参考答案:
【答案】20
【解析】
首先利用三边及⊙O的半径表示出平行四边形的面积,再根据题意求出AB+AD=13,然后利用切线的性质求出BD的长即可解答.
设⊙O分别切△ABD的边AD、AB、BD于点G、E、F;
平行四边形ABCD的面积为S;
则S=2S△ABD=2×
(AB·OE+BD·OF+AD·OG)=
(AB+AD+BD);
∵平行四边形ABCD的周长为26,
∴AB+AD=13,
∴S=
(13+BD);连接OA;
由题意得:∠OAE=30°,
∴AG=AE=3;同理可证DF=DG,BF=BE;
∴DF+BF=DG+BE=13﹣3﹣3=7,
即BD=7,
∴S=
(13+7)=20
.
即平行四边形ABCD的面积为20
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校“体育课外活动兴趣小组”,开设了以下体育课外活动项目:A.足球 B.乒乓球C.羽毛球 D.篮球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人,在扇形统计图中“D”对应的圆心角的度数为 ;
(2)请你将条形统计图补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加市里组织的乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场经销水杯,电热水壶两种商品,水杯每个进价15元,售价20元;电热水壶每个进价35元,售价45元.
(1)若该商场同时购进水杯、电热水壶共100件,恰好用去2700元,求能购进水杯、电热水壶各多少个?
(2)商场要求小明用1050元的钱(必须全部用完)采购水杯、电热水壶(或其中一种商品),且还要求总利润不少于340元(假设商品全部卖完),请你确定所有的进货方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明用大小相同高度为2cm的10块小长方体垒了两堵与地面垂直的木墙AD, BE,当他将一个等腰直角三角板ABC如图垂直放入时,直角顶点C正好在水平线DE上,锐角顶点A和B分别与木墙的顶端重合,求两堵木墙之间的距离。

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,△ABC的三个顶点的坐标为A(3,4),B(1,2), C(5, 1).
(1)写出A、B、C关于y轴对称的点A1、B1、C1的坐标: A1_____、 B1 、C1 ;
(2)若
各顶点的横坐标不变,纵坐标都乘以-1,请你在同一坐标系中描出对应的点A'、B'、C',并依次连接这三个点,判断所得△A′B′C′与原
有怎样的位置关系。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).
(1)求证:无论m为任何非零实数,此方程总有两个实数根;
(2)若抛物线y=mx2+(1﹣5m)x﹣5与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;
(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,实线部分是由正方形,正五边形和正六边形叠放在一起形成的,其中正方形和正六边形的边长相同,求图中∠MON的度数.

相关试题