【题目】某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿
补偿额
批发价
生产成本价
销售量
大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量
件
与销售单价
元
之间的关系近似满足一次函数:
已知这种节能灯批发价为每件12元,设它的生产成本价为每件m元![]()
(1)当
时.
①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元?
②设所获得的利润为
元
,当销售单价定为多少元时,每月可获得最大利润?
(2)物价部门规定,这种节能灯的销售单价不得超过30元
今年三月小明获得赢利,此时政府给该企业补偿了920元,若m,x都是正整数,求m的值.
参考答案:
【答案】
(2)8.
【解析】
把
代入
求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;
由总利润
销售量
每件纯赚利润,得
,把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;
根据题意列出关于m和x的方程,再从两个未知数取值条件求得结果.
当
时,
,
元,
答:第一个月政府要给该企业补偿600元;
由题意得,
,
,
当
时,w有最大值4000元.
答:当销售单价定为30元时,每月可获得最大利润4000元;
由题意得,
,
,
,x为整数,
,且
为整数,
,且m为整数,
,
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.
(1)求M点的坐标及a,b的值;
(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,当m为多少时,s=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AD∥BC,AB⊥AC,点E是BC的中点,AE与BD交于点F,且F是AE的中点.
(Ⅰ)求证:四边形AECD是菱形;(Ⅱ)若AC=4,AB=5,求四边形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在数轴上点A表示的有理数为-6,点B表示的有理数为4,点P从点A出发,以每秒2个单位长度的速度在数轴上向点B运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止.设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,直接写出所有满足条件的t值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个正五边形与一个正方形的边长正好相等,在它们相接的地方,形成一个完整的“苹果”图案(如图).如果让正方形沿着正五边形的四周滚动,并且始终保持正方形和正五边形有两条边邻接,那么第一次恢复“苹果”的图形时,正方形要绕五边形转( )圈.

A. 4 B. 3 C. 6 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)观察下列各式:
……试用你发现的规律填空:
,
。(2)请你用含有一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性。
相关试题