【题目】如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则
等于( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】C
【解析】解:∵四边形MBND是菱形,
∴MD=MB.
∵四边形ABCD是矩形,
∴∠A=90°.
设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).
在Rt△ABM中,AB2+AM2=BM2 , 即x2+y2=(2x﹣y)2 ,
解得x=
y,
∴MD=MB=2x﹣y=
y,
∴
=
=
.
故选:C.
【考点精析】掌握勾股定理的概念和菱形的性质是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知A(-3,0),B(0,
),点D与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)
(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时
①t为何值时,⊙P与y轴相切?
②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.
(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,EF∥AD,∠1=∠2,∠B=35°,将求∠BDG的过程填写完整. 解:∵EF∥AD,
∴∠2=()
又∵∠1=∠2
∴∠1=( 等量代换 )
∴DG∥()
∴∠B+=180°()
∵∠B=35°
∴∠BDG= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】2的相反数是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中.矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.如果OA=3,OC=2,则经过点E的反比例函数解析式为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.
(1)求证:△AEB≌△CFD;
(2)若四边形EBFD是菱形,求∠ABD的度数.

相关试题