【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2 , 且x1<x2 , 则x1<﹣1<5<x2 . 其中正确的结论有( ) ![]()
A.2个
B.3个
C.4个
D.5个
参考答案:
【答案】B
【解析】解:(1)正确.∵﹣
=2, ∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,
∴9a﹣3b+c<0,
∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),
∴
解得
,
∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,
∵a<0,
∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3),
∵
﹣2=
,2﹣(﹣
)=
,
∴
<
∴点C离对称轴的距离近,
∴y3>y2 ,
∵a<0,﹣3<﹣
<2,
∴y1<y2
∴y1<y2<y3 , 故(4)错误.(5)正确.∵a<0,
∴(x+1)(x﹣5)=﹣3/a>0,
即(x+1)(x﹣5)>0,
故x<﹣1或x>5,故(5)正确.
∴正确的有三个,
故选B.![]()
【考点精析】掌握二次函数图象以及系数a、b、c的关系是解答本题的根本,需要知道二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】不等式组
的解集表示在数轴上,正确的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是( )

A.1:3
B.1:4
C.1:5
D.1:25 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图是某工件的三视图,则此工件的表面积为( )

A.15πcm2
B.51πcm2
C.66πcm2
D.24πcm2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=
BD,连接DM、DN、MN.若AB=6,则DN= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=x+4与双曲线y=
(k≠0)相交于A(﹣1,a)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),PT与⊙O1相切于点T,PAB与⊙O1相交于A、B两点,可证明△PTA∽△PBT,从而有PT2=PAPB.请应用以上结论解决下列问题:如图(2),PAB、PCD分别与⊙O2相交于A、B、C、D四点,已知PA=2,PB=7,PC=3,则CD= .

相关试题