【题目】如图,抛物线
经过点
,与
轴负半轴交于点
,与
轴交于点
,且
.
(1)求抛物线的解析式;
(2)点
在
轴上,且
,求点
的坐标;
(3)点
在抛物线上,点
在抛物线的对称轴上,是否存在以点
,
,
,
为顶点的四边形是平行四边形?若存在。求出所有符合条件的点
的坐标;若不存在,请说明理由.
![]()
参考答案:
【答案】(1)y=x2﹣2x﹣3;(2)D1(0,1),D2(0,﹣1);(3)存在,M(4,5)或(﹣2,5)或(0,﹣3)
【解析】
试题分析:(1)待定系数法即可得到结论;
(2)连接AC,作BF⊥AC交AC的延长线于F,根据已知条件得到AF∥x轴,得到F(﹣1,﹣3),设D(0,m),则OD=|m|即可得到结论;
(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(﹣2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.
试题解析:(1)由y=ax2+bx﹣3得C(0.﹣3),
∴OC=3,
∵OC=3OB,
∴OB=1,
∴B(﹣1,0),
把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得
,
∴
,
∴抛物线的解析式为y=x2﹣2x﹣3;
(2)设连接AC,作BF⊥AC交AC的延长线于F,
∵A(2,﹣3),C(0,﹣3),
∴AF∥x轴,
∴F(﹣1,﹣3),
∴BF=3,AF=3,
∴∠BAC=45°,
设D(0,m),则OD=|m|,
∵∠BDO=∠BAC,
∴∠BDO=45°,
∴OD=OB=1,
∴|m|=1,
∴m=±1,
∴D1(0,1),D2(0,﹣1);
![]()
(3)设M(a,a2﹣2a﹣3),N(1,n),
①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF⊥x轴于F,
则△ABF≌△NME,
∴NE=AF=3,ME=BF=3,
∴|a﹣1|=3,
∴a=4或a=﹣2,
∴M(4,5)或(﹣2,5);
![]()
②以AB为对角线,BN=AM,BN∥AM,如图3,
则N在x轴上,M与C重合,
∴M(0,﹣3),
综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,5)或(0,﹣3).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】比﹣1小3的数是( )
A.4B.2C.﹣2D.﹣4
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,表示﹣17的点与表示﹣10的点之间的距离是( )
A.27个单位长度
B.﹣27个单位长度
C.7个单位长度
D.﹣7个单位长度 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明对本班同学每天花多少零用钱进行了调查,计算出平均数为3,中位数为3,众数为2,极差为8,假如老师随机问一名同学每天花多少零用钱,最有可能得到的回答是( ).
A. 3 B. 2 C. 8 D. 不能确定
-
科目: 来源: 题型:
查看答案和解析>>【题目】元代朱世杰所著的《算学启蒙》里有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”请你回答:良马天可以追上驽马.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的
倍,购进数量比第一次少了30支.
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠C=90°,AC=3,BC=4,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .
相关试题