【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF.
(1)求证:△ADE≌△BFE.
(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.
![]()
参考答案:
【答案】(1)证明见解析;(2)EM与DM的关系是EM垂直且平分DF;理由见解析.
【解析】试题分析:(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;
(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.
试题解析:(1)证明:∵AD∥BC,
∴∠ADE=∠BFE,
∵E为AB的中点,
∴AE=BE,
在△AED和△BFE中,
,
∴△AED≌△BFE(AAS);
(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:
连接EM,如图所示:
![]()
由(1)得:△AED≌△BFE,
∴DE=EF,
∵∠MDF=∠ADF,∠ADE=∠BFE,
∴∠MDF=∠BFE,
∴FM=DM,
∴EM⊥DF,
∴ME垂直平分DF.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程m x2-(m+2)x+2=0(m≠0).
(1)求证:无论m为何值时,这个方程总有两个实数根;
(2)若方程的两个实数根都是整数,求正整数m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:
(1)画出△ABC关于y轴的对称图形△A1B1C1;
(2)请计算△ABC的面积;
(3)直接写出△ABC关于x轴对称的三角形△A2B2C2的各点坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为响应市委市政府提出的建设“绿色襄阳”的号召,我市某单位准备将院内一块长30m,宽20m的长方形空地,建成一个矩形花园.要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为多少米?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各等式正确的是( )
A.a3a2=a6 B.(x3)2=x6 C.(mn)3=mn3 D.b8÷b4=b2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求证:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 , 2016是第 个三角形数.
相关试题