【题目】已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形,
(1)求证:四边形ADCE是平行四边形;
(2)当△ABC满足什么条件时,平行四边形ADCE是矩形?
![]()
参考答案:
【答案】见解析
【解析】试题分析:证明是平行四边形的方法有很多,此题用一组对边平行且相等较为简单,在平行四边形的基础上只需一个角是直角即可.
试题解析:证明:(1)∵四边形BCED是平行四边形,∴BD=CE且BD∥CE.又∵D是△ABC的边AB的中点,∴AD=BD,即DA=CE.又∵DA∥CE,∴四边形ADCE是平行四边形.
(2)当△ABC为等腰三角形且AC=BC时,四边形ADCE是矩形.证明如下:
∵AC=BC,D是△ABC的边AB的中点,∴CD⊥AD,∴∠CDA=90°.∵四边形ADCE是平行四边形,∴四边形ADCE是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2 . 已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②
;③当0<t≤5时,
;④当
秒时,△ABE∽△QBP;其中正确的结论是( )
A.①②③
B.②③
C.①③④
D.②④ -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在如图所示的数轴上,把数﹣2,
,4,﹣
,2.5表示出来,并用“<“将它们连接起来;(2)假如在原点处放立一挡板(厚度不计),有甲、乙两个小球(忽略球的大小,可看作一点),小球甲从表示数﹣2的点处出发,以1个单位长度/秒的速度沿数轴向左运动;同时小球乙从表示数4的点处出发,以2个单位长度/秒的速度沿数轴向左运动,在碰到挡板后即刻按原来的速度向相反的方向运动,设运动的时间为t(秒).
请从A,B两题中任选一题作答.
A.当t=3时,求甲、乙两小球之间的距离.
B.用含t的代数式表示甲、乙两小球之间的距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,∠BAC=150°,点A到BC的距离为1,与AB重合的一条射线AP,从AB开始,以每秒15°的速度绕点A逆时针匀速旋转,到达AC后立即以相同的速度返回AB,到达后立即重复上述旋转过程,设AP与BC边的交点为M,旋转2019秒时,BM= , CM= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知凸四边形ABCD中,∠A=∠C=90°.

(1)如图1,若DE平分∠ADC,BF平分∠ABC的邻补角,判断DE与BF位置关系并证明.
(2)如图2,若BF、DE分别平分∠ABC、∠ADC的邻补角,判断DE与BF位置关系并证明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,放置的一副三角尺,将含45°角的三角尺斜边中点O为旋转中心,逆时针旋转30°得到如图2,连接OB、OD、AD.

(1)求证:△AOB≌△AOD;
(2)试判定四边形ABOD是什么四边形,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
相关试题