【题目】△ABC在平面直角坐标系xOy中的位置如图所示.(不写解答过程,直接写出结果)
(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为 ;
(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为 ;
(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长为 ;
(4)在x轴上找一点P,使PA+PB的值最小,则点P的坐标为 .
![]()
参考答案:
【答案】(1)(2,﹣3);(2)(3,1);(3)π;(4)(
,0).
【解析】
试题分析:(1)利用关于原点中心对称的点的坐标特征求解;
(2)利用点的平移规律求解;
(3)点C走过的路径为以点O为圆心,OC为半径,圆心角为90度的弧,然后根据弧长公式计算点C走过的路径长;
(4)先确定点B关于x轴的对称点B′坐标为(﹣1,﹣1),连结AB′交x轴于P点,根据两点之间线段最短可确定PA+PB的值最小,接着利用待定系数法求出直线AB′的解析式,然后求直线AB′与x轴的交点坐标就看得到点P的坐标.
试题解析:(1)若△A1B1C1与△ABC关于原点O成中心对称,则点A1的坐标为(2,﹣3);
(2)将△ABC向右平移4个单位长度得到△A2B2C2,则点B2的坐标为(3,1);
(3)将△ABC绕O点顺时针方向旋转90°,则点C走过的路径长=
=π;
(4)B点关于x轴的对称点B′坐标为(﹣1,﹣1),连结AB′交x轴于P点,则PA+PB=PA+PB′=AB′,此时PA+PB的值最小,设直线AB′的解析式为y=kx+b,把A(﹣2,3),B′(﹣1,﹣1)代入得:
,得:
,所以直线AB′的解析式为y=﹣4x﹣5,当y=0时,﹣4x﹣5=0,解得x=
,所以此时点P的坐标为(
,0).
故答案为:(2,﹣3);(3,1);π;(
,0).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1.如果四边形ABD1C1是矩形,那么平移的距离为 cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】两个连续奇数的平方差是( )
A.6的倍数
B.8的倍数
C.12的倍数
D.16的倍数 -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
(1)请你回答:AP的最大值是 .
(2)参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,请写出求AP+BP+CP的最小值长的解题思路.
提示:要解决AP+BP+CP的最小值问题,可仿照题目给出的做法.把△ABP绕B点逆时针旋转60,得到△A′BP′.
①请画出旋转后的图形
②请写出求AP+BP+CP的最小值的解题思路(结果可以不化简).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中是真命题的有( )
①直径是圆中最大的弦;②长度相等的弧是等弧;③平分弦的直径垂直于弦,并且平分弦所对的两条弧;④两个圆心角相等,它们所对的弦也相等;⑤等弧所对的圆心角相等.
A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本
(单位:元)、销售价
(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的
与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(-12)-5+(-14)-(-39)
(2)
(3)-22-
(4)
×(-15)(用简便方法计算)
相关试题