【题目】如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 . ![]()
参考答案:
【答案】![]()
【解析】解:如图3中,连接AH. ![]()
由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,
∴AH=
=
=
,
所以答案是
.
【考点精析】通过灵活运用矩形的性质和翻折变换(折叠问题),掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.

(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF=1,BC=2
,求阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.

(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF , 其中正确的是( )

A.①③
B.②③
C.①④
D.②④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠A>∠B.

(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);
(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知四边形ABCD,ADEF都是菱形,∠BAD=∠FAD,∠BAD为锐角.

(1)求证:AD⊥BF;
(2)若BF=BC,求∠ADC的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信息回答下列问题: 体重频数分布表
组边
体重(千克)
人数
A
45≤x<50
12
B
50≤x<55
m
C
55≤x<60
80
D
60≤x<65
40
E
65≤x<70
16

(1)填空:①m=(直接写出结果); ②在扇形统计图中,C组所在扇形的圆心角的度数等于度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?
相关试题