【题目】如图,某人到岛上去探宝,从A处登陆后先往东走4 km,又往北走1.5 km,遇到障碍后又往西走2 km,再折回向北走到4.5 km处往东一拐,仅走0.5 km就找到宝藏.问登陆点A与宝藏埋藏点B之间的距离是多少?
![]()
参考答案:
【答案】登陆点A与宝藏埋藏点B之间的距离是6.5 km.
【解析】
过点B作BC⊥AD于点C,根据题意可得AC=4-2+0.5=2.5(km),BC=4.5+1.5=6(km),然后根据勾股定理可得AB2=AC2+BC2=2.52+62=6.52,继而求出AB.
解:如图,过点B作BC⊥AD于点C,
![]()
则AC=4-2+0.5=2.5(km),BC=4.5+1.5=6(km),
在Rt△ABC中,由勾股定理,得:
AB2=AC2+BC2=2.52+62=6.52,
∴AB=6.5(km).
答:登陆点A与宝藏埋藏点B之间的距离是6.5 km.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.
(1)①若m=60,写出射线OC的方向.(直接回答)
②请直接写出图中所有与∠BOE互余的角及与∠BOE互补的角.
(2)如图2,若射线OA是∠BON的平分线,
①若m=70,求∠AOC的度数.
②若m为任意角度,求∠AOC的度数.(结果用含m的式子表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,直线MN是等边△ABC底边BC的中垂线,点P在直线MN上,且使△PAB、△PAC、△PBC都是等腰三角形,满足上述条件的点P的个数有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四边形AEPF,上述结论正确的有( )

A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】①在数轴上没有点能表示
+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是
=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是______. -
科目: 来源: 题型:
查看答案和解析>>【题目】元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;
(1)贺年卡的零售价是多少?
(2)班里有多少学生?
相关试题