【题目】如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论: ①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣
,0);⑤am2+bm+a≥0,其中所有正确的结论是 . ![]()
参考答案:
【答案】②④⑤
【解析】解:由图象可知,抛物线开口向上,则a>0, 顶点在y轴右侧,则b<0,
抛物线与y轴交于负半轴,则c<0,
∴abc>0,故①错误;
∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,
∴抛物线y=ax2+bx+c过点(3,0),
∴当x=3时,y=9a+3b+c=0,
∵a>0,
∴10a+3b+c>0,故②正确;
∵对称轴为x=1,且开口向上,
∴离对称轴水平距离越大,函数值越大,
∴y1<y2 , 故③错误;
当x=﹣
时,y=a(﹣
)2+b(﹣
)+c=
=
,
∵当x=﹣1时,y=a﹣b+c=0,
∴当x=﹣
时,y=a(﹣
)2+b(﹣
)+c=0,
即无论a,b,c取何值,抛物线都经过同一个点(﹣
,0),故④正确;
x=m对应的函数值为y=am2+bm+c,
x=1对应的函数值为y=a+b+c,
又∵x=1时函数取得最小值,
∴am2+bm+c≥a+b+c,即am2+bm≥a+b,
∵b=﹣2a,
∴am2+bm+a≥0,故⑤正确;
所以答案是:②④⑤.
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.

(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=
时,求线段BG的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4
且∠AFG=60°,GE=2BG,则折痕EF的长为( ) 
A.1
B.
C.2
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A(a,3),B(b,1)都在双曲线y=
上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.

-
科目: 来源: 题型:
查看答案和解析>>【题目】现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04

请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,
≈1.732,结果取整数)
相关试题