【题目】解下列方程:
(1)x(x-1)=3x+7
(2)4x2-4x+1=(x+3)2
参考答案:
【答案】
(1)解:
x(x-1)=3x+7
x2-x=3x+7
x2-4x-7=0
x2-4x+4=11
(x-2)2=11
解得:x1=
+2,x2=-
+2
(2)解:
4x2-4x+1=(x+3)2
(2x-1)2=(x+3)2
(2x-1+x+3)(2x-1-x-3)=0
解得:x1=-
,x2=4
【解析】本题主要考查解一元二次方程。(1)先去括号,化简,然后利用配方法求解.(2)先配方,然后利用平方差公式进行求解。
【考点精析】本题主要考查了配方法和因式分解法的相关知识点,需要掌握左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题;已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,对角线
相交于点
于点
于点F,连结
,则下列结论:
;
;
;
图中共有四对全等三角形
其中正确结论的个数是

A. 4 B. 3 C. 2 D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】在面积为12的平行四边形ABCD中,过点A作直线BC的垂线交BC于点E,过点A作直线CD的垂线交CD于点F,若
,则
的值为______. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2-2x-3与x轴相交于A、B两点,其顶点为M,将此抛物线在x轴下方的部分沿x轴翻折,其余部分保持不变,得到一个新的图象.如图,当直线y=-x+n与此图象有且只有两个公共点时,则n的取值范围为

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠AOB=130°,∠COD=80°,OM,ON分别是∠AOB和∠COD的平分线.
(1)如果OA,OC重合,且OD在∠AOB的内部,如图1,求∠MON的度数;
(2)如果将图1中的∠COD绕点O点顺时针旋转n°(0<n<155),如图2,
①∠MON与旋转度数n°有怎样的数量关系?说明理由;
②当n为多少时,∠MON为直角?
(3)如果∠AOB的位置和大小不变,∠COD的边OD的位置不变,改变∠COD的大小;将图1中的OC绕着O点顺时针旋转m°(0<m<100),如图3,∠MON与旋转度数m°有怎样的数量关系?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:
请你根据上图填写下表:销售公司
平均数
方差
中位数
众数
甲

9
乙
9

8
请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:
从平均数和方差结合看;
从折线图上甲、乙两个汽车销售公司销售数量的趋势看
分析哪个汽车销售公司较有潜力
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回则记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)
(1)守门员最后是否回到球门线上?
(2)守门员离开球门线的最远距离达多少米?
(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门.请问在这一时间段内,对方球员有几次挑射破门的机会?

相关试题