【题目】能判定四边形
是平行四边形的是( )
A.AB∥CD,
B. AB∥CD,![]()
C.
,
D.
,![]()
参考答案:
【答案】B
【解析】
平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据平行四边形的5种判定定理逐一验证即可.
解:如下图,
![]()
A.根据一组对边平行,另一组对边相等不能判定四边形ABCD是平行四边形,故该选项错误;
B.∵AB∥CD,
∴∠B+∠C=180°,
∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC,
∴四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形),故该选项正确;
C.根据平行四边形的判定定理,该选项无法判断四边形是平行四边形,故该选项错误;
D.根据平行四边形的判定定理,该选项无法判断四边形是平行四边形,故该选项错误.
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】前年,某大型工业企业落户万州,相关建设随即展开.到去年年底,工程进入到设备安装阶段.在该企业的采购计划中,有A、B、C三种生产设备.若购进3套A,7套B,1套丙,需资金63万元;若购进4套A,10套B,1套丙,需资金84万元.现在打算同时购进A、B、C各10套,共需资金___________________万元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在数轴上,A点表示2,现在点A向右移动两个单位后到达点B;再向左移动10个单位到达C点:
(1)请在数轴上表示出A点开始移动时位置及B、C点位置;
(2)当A点移动到C点时,若要再移动到原点,问必须向哪个方向移动多少个单位?
(3)请把A点从开始移动直至到达原点这一过程,用一个有理数算式表达出来.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A,B,C是x轴的正半轴上从左向右依次排列的三点,过点A,B,C分别作与
轴平行的直线
,
,
.
(1)如图1,若直线
与直线
,
,
分别交于点D,E,F三点,设D(
,
),E(
,
),F(
,
) .①若
,
,
,则
(填“=”,“>”或“<”);②若
,
,
(
),求证:AB=BC;(2)如图2,点A,B,C的横坐标分别为
,n,
(
),直线
,
,
与反比例函数
(
)的图像分别交于点D,E,F,根据以上探究的经验,探索
与
之间的大小关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料,并用相关的思想方法解决问题.
计算:(1﹣
﹣
﹣
)×(
+
+
)﹣(1﹣
﹣
﹣
)×(
+
+
).令
+
+
=t,则原式=(1﹣t)(t+
)﹣(1﹣t﹣
)t=t+
﹣t2﹣
t﹣
t+t2=
,问题:
(1)计算:(1﹣
﹣
﹣
)×(
+
+
)﹣(1﹣
﹣
﹣
)×(
+
+
);(2)解方程(x2+5x+1)(x2+5x+7)=7.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
为平行四边形
的对角线,
,
于
,
于
,
、
相交于
,直线
交线段
的延长线于
,下面结论:①
;②
;③
;④
其中正确的个数是( )
A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.阜阳市某家快递公司,2017年3月份与5月份完成投递的快递总件数分别为10万件和12.1万件.现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递快递总件数的月平均增长率?
(2) 如果平均每人每月最多可投递快递0.6万件,那么该公司现有的21名快递投递业务员能否完成2017年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
相关试题