【题目】如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是( )
![]()
A. (0,0); B. (0,1); C. (0,2); D. (0,3).
参考答案:
【答案】D
【解析】试题分析:根据轴对称作最短路线得出AE=B′E,进而得出B′O=C′O,即可得出△ABC的周长最小时C点坐标.
解:作B点关于y轴对称点B′点,连接AB′,交y轴于点C′,
此时△ABC的周长最小,
∵点A、B的坐标分别为(1,4)和(3,0),
∴B′点坐标为:(﹣3,0),AE=4,
则B′E=4,即B′E=AE,
∵C′O∥AE,
∴B′O=C′O=3,
∴点C′的坐标是(0,3),此时△ABC的周长最小.
故选:D.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,线段AB和CD数轴上运动,A开始时与原点重合,且
.(1)若AB=10,且B为线段AC的中点,求线段AD的长.
(2)在(1)的条件下,线段AB和CD同时开始向右运动,线段AB的速度为5个单位/秒,线段CD的速度为3个单位/秒,经过t秒恰好有
,求t的值.(3)若线段AB和CD同时开始向左运动,且线段AB的速度大于线段CD的速度,在点A和C之间有一点P(不与点B重合),且有
,此时线段BP为定值吗?若是请求出这个定值,若不是请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(背景知识)
数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴我们发现有许多重要的规律:
例如,若数轴上
点、
点表示的数分别为
、
,则
、
两点之间的距离
,线段
的中点
表示的数为
.(问题情境)
在数轴上,点
表示的数为-20,点
表示的数为10,动点
从点
出发沿数轴正方向运动,同时,动点
也从点
出发沿数轴负方向运动,已知运动到4秒钟时,
、
两点相遇,且动点
、
运动的速度之比是
(速度单位:单位长度/秒).

备用图
(综合运用)
(1)点
的运动速度为______单位长度/秒,点
的运动速度为______单位长度/秒;(2)当
时,求运动时间;(3)若点
、
在相遇后继续以原来的速度在数轴上运动,但运动的方向不限,我们发现:随着动点
、
的运动,线段
的中点
也随着运动.问点
能否与原点重合?若能,求出从
、
相遇起经过的运动时间,并直接写出点
的运动方向和运动速度;若不能,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学七年级开展演讲比赛,学校决定购买一些笔记本和钢笔作为奖品.现了解情况如下:甲、乙两家商店出售两种同样品牌的笔记本和钢笔.笔记本定价为每本20元,钢笔每支定价5元,经洽谈后,甲店每买一本笔记本赠一支钢笔;乙店全部按定价的9折优惠.七年级需笔记本20本,钢笔若干支(不小于20支).问:
(1)如果购买钢笔
(
不小于20)支,则在甲店购买需付款 ______ 元,在乙店购买需付款 _______________ 元.(用x的代数式表示)(2)当购买钢笔多少支时,在两店购买付款一样?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).
(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;
(2)请画出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两人分别从相距100km的A、B两地同时出发相向而行,并以各自的速度匀速行驶.甲出发2h后到达B地立即按原路返回,返回时速度提高了30km/h,回到A地后在A地休息等乙,乙在出发5h后到达A地.(友情提醒:可以借助用线段图分析题目)
(1)乙的速度是_______
,甲从A地到B地的速度是_______
,甲在出发_______小时到达A地.(2)出发多长时间两人首次相遇?
(3)出发多长时间时,两人相距30千米?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,
分别表示使用一种白炽灯和一种节能灯的费用
(费用
灯的售价
电费,单位:元)与照明时间
(小时)的函数图象,假设两种灯的使用寿命都是
小时,照明效果一样.
(1)根据图象分别求出
,
的函数表达式;(2)小亮认为节能灯一定比白炽灯省钱,你是如何想的?
相关试题