【题目】【问题情境】
在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.
![]()
图① 图② 图③
证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)
【变式探究】
当点P在CB延长线上时,其余条件不变(如图3).试探索PD、PE、CF之间的数量关系并说明理由.
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
![]()
【迁移拓展】
在直角坐标系中.直线l1:y=
与直线l2:y=2x+4相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为1.求点P的坐标.
![]()
参考答案:
【答案】【变式探究】:详见解析;【结论运用】:4;【迁移拓展】:P1的坐标为(
,3)或(
,5)
【解析】试题分析:【变式探究】按照【问题情境】的证明思路即可解决问题.
【结论运用】过
作
利用问题情境中的结论可得
,易证
只需求即可.
【迁移拓展】分成两种情况进行讨论.
试题解析:【变式探究】:连接
![]()
∵PD⊥AB,PE⊥AC,CF⊥AB,
【结论运用】过
作
垂足为
,如图④,
![]()
∵四边形
是长方形,
由折叠可得:
∴四边形
是长方形.
∵AD∥BC,
由问题情境中的结论可得:
的值为4.
【迁移拓展】
由题意得:
(1)由结论得:
![]()
即点
的纵坐标为3,
又点
在直线l2上 ∴
=3 ,
∴
.
即点
的坐标为
(2) 由结论得:
即点
的纵坐标为5,
又点
在直线l2上 ∴
=5.
∴
.
即点
的坐标为![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的
.
(1)求第4天B款运动鞋的销售量.
(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?
(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题:
(1)25.7+(﹣7.3)+(﹣13.7)+7.3
(2)

(3)﹣14﹣(1﹣0.5)×

(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为( )

A.2.5
B.2.8
C.3
D.3.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在□ABCD中,点E,F分别是边AB,CD的中点,(1)求证:△CFB≌△AED;
(2)若∠ADB=90°,判断四边形BFDE的形状,并说明理由;

-
科目: 来源: 题型:
查看答案和解析>>【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城市街道上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30 m处,过了2 s后,测得小汽车与车速检测仪间距离为50 m,这辆小汽车超速了吗?

相关试题