【题目】如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则DC=


参考答案:

【答案】2
【解析】解:∵BD为⊙O的直径, ∴∠BAD=∠BCD=90°,
∵∠BAC=120°,
∴∠CAD=120°﹣90°=30°,
∴∠CBD=∠CAD=30°,
又∵∠BAC=120°,
∴∠BDC=180°﹣∠BAC=180°﹣120°=60°,
∵AB=AC,
∴∠ADB=∠ADC,
∴∠ADB= ∠BDC= ×60°=30°,
∵AD=6,
∴在Rt△ABD中,BD=AD÷sin60°=6÷ =4
在Rt△BCD中,DC= BD= ×4 =2
所以答案是:2
【考点精析】根据题目的已知条件,利用含30度角的直角三角形和勾股定理的概念的相关知识可以得到问题的答案,需要掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

关闭